Skip to main content

Characterization and Activation of Fas Ligand-Producing Mouse B Cells and Their Killer Exosomes

  • Protocol
  • First Online:
Regulatory B Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2270))

Abstract

B lymphocytes make several contributions to immune regulation including production of antibodies with regulatory properties, release of immune suppressive cytokines, and expression of death-inducing ligands. A role for Fas ligand (FasL)-expressing “killer” B cells in regulating T helper (TH) cell survival and chronic inflammation has been demonstrated in animal models of schistosome worm and other infections, asthma, autoimmune arthritis, and type 1 diabetes. FasL+ B cells were also capable of inducing immune tolerance in a male-to-female transplantation model. Interestingly, populations of B cells found in the spleen and lungs of naïve mice constitutively expresses FasL and have potent killer function against TH cells that is antigen-specific and FasL-dependent. Epstein-Barr virus-transformed human B cells constitutively express FasL and package it into exosomes that co-express MHC Class II molecules and have killer function against antigen-specific TH cells. FasL+ exosomes with markers of B-cell lineage are abundant in the spleen of naïve mice. Killer B cells therefore represent a novel target for immune modulation in many disease settings. Our laboratory has published methods of characterizing FasL+ B cells and inducing their proliferation in vitro. This updated chapter will describe methods of identifying and expanding killer B cells from mice, detecting FasL expression in B cells, extracting FasL+ exosomes from spleen and culture supernatants, and performing functional killing assays against antigen-specific TH cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roths JB, Murphy ED, Eicher EM (1984) A new mutation, gld, that produces lymphoproliferation and autoimmunity in C3H/HeJ mice. J Exp Med 159(1):1–20

    Article  CAS  PubMed  Google Scholar 

  2. Sobel ES, Kakkanaiah VN, Cohen PL, Eisenberg RA (1993) Correction of gld autoimmunity by co-infusion of normal bone marrow suggests that gld is a mutation of the Fas ligand gene. Int Immunol 5(10):1275–1278

    Article  CAS  PubMed  Google Scholar 

  3. Lynch DH, Watson ML, Alderson MR, Baum PR, Miller RE, Tough T, Gibson M, Davis-Smith T, Smith CA, Hunter K et al (1994) The mouse Fas-ligand gene is mutated in gld mice and is part of a TNF family gene cluster. Immunity 1(2):131–136

    Article  CAS  PubMed  Google Scholar 

  4. Takahashi T, Tanaka M, Brannan CI, Jenkins NA, Copeland NG, Suda T, Nagata S (1994) Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell 76(6):969–976

    Article  CAS  PubMed  Google Scholar 

  5. Hahne M, Peitsch MC, IrmLer M, Schroter M, Lowin B, Rousseau M, Bron C, Renno T, French L, Tschopp J (1995) Characterization of the non-functional Fas ligand of gld mice. Int Immunol 7(9):1381–1386

    Article  CAS  PubMed  Google Scholar 

  6. Adachi M, Watanabe-Fukunaga R, Nagata S (1993) Aberrant transcription caused by the insertion of an early transposable element in an intron of the Fas antigen gene of lpr mice. Proc Natl Acad Sci U S A 90(5):1756–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wu J, Zhou T, He J, Mountz JD (1993) Autoimmune disease in mice due to integration of an endogenous retrovirus in an apoptosis gene. J Exp Med 178(2):461–468

    Article  CAS  PubMed  Google Scholar 

  8. Nagata S, Suda T (1995) Fas and Fas ligand: lpr and gld mutations. Immunol Today 16(1):39–43

    Article  CAS  PubMed  Google Scholar 

  9. Fisher GH, Rosenberg FJ, Straus SE, Dale JK, Middleton LA, Lin AY, Strober W, Lenardo MJ, Puck JM (1995) Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81(6):935–946

    Article  CAS  PubMed  Google Scholar 

  10. Rieux-Laucat F, Le Deist F, Hivroz C, Roberts IA, Debatin KM, Fischer A, de Villartay JP (1995) Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 268(5215):1347–1349

    Article  CAS  PubMed  Google Scholar 

  11. Bleesing JJ (2005) Sorting out the causes of ALPS. J Pediatr 147(5):571–574. https://doi.org/10.1016/j.jpeds.2005.09.025

    Article  PubMed  Google Scholar 

  12. Infante AJ, Britton HA, DeNapoli T, Middelton LA, Lenardo MJ, Jackson CE, Wang J, Fleisher T, Straus SE, Puck JM (1998) The clinical spectrum in a large kindred with autoimmune lymphoproliferative syndrome caused by a Fas mutation that impairs lymphocyte apoptosis. J Pediatr 133(5):629–633

    Article  CAS  PubMed  Google Scholar 

  13. Sneller MC, Straus SE, Jaffe ES, Jaffe JS, Fleisher TA, Stetler-Stevenson M, Strober W (1992) A novel lymphoproliferative/autoimmune syndrome resembling murine lpr/gld disease. J Clin Invest 90(2):334–341. https://doi.org/10.1172/JCI115867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Magerus-Chatinet A, Stolzenberg MC, Loffredo MS, Neven B, Schaffner C, Ducrot N, Arkwright PD, Bader-Meunier B, Barbot J, Blanche S, Casanova JL, Debre M, Ferster A, Fieschi C, Florkin B, Galambrun C, Hermine O, Lambotte O, Solary E, Thomas C, Le Deist F, Picard C, Fischer A, Rieux-Laucat F (2009) FAS-L, IL-10, and double-negative CD4- CD8- TCR alpha/beta+ T cells are reliable markers of autoimmune lymphoproliferative syndrome (ALPS) associated with FAS loss of function. Blood 113(13):3027–3030. https://doi.org/10.1182/blood-2008-09-179630

    Article  CAS  PubMed  Google Scholar 

  15. Stroncek DF, Carter LB, Procter JL, Dale JK, Straus SE (2001) RBC autoantibodies in autoimmune lymphoproliferative syndrome. Transfusion 41(1):18–23

    Article  CAS  PubMed  Google Scholar 

  16. Wu J, Wilson J, He J, Xiang L, Schur PH, Mountz JD (1996) Fas ligand mutation in a patient with systemic lupus erythematosus and lymphoproliferative disease. J Clin Invest 98(5):1107–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kojima T, Horiuchi T, Nishizaka H, Sawabe T, Higuchi M, Harashima SI, Yoshizawa S, Tsukamoto H, Nagasawa K, Niho Y (2000) Analysis of fas ligand gene mutation in patients with systemic lupus erythematosus. Arthritis Rheum 43(1):135–139

    Article  CAS  PubMed  Google Scholar 

  18. Atkinson EA, Bleackley RC (1995) Mechanisms of lysis by cytotoxic T cells. Crit Rev Immunol 15(3–4):359–384

    Article  CAS  PubMed  Google Scholar 

  19. Oshimi Y, Oda S, Honda Y, Nagata S, Miyazaki S (1996) Involvement of Fas ligand and Fas-mediated pathway in the cytotoxicity of human natural killer cells. J Immunol 157(7):2909–2915

    Article  CAS  PubMed  Google Scholar 

  20. Hahne M, Renno T, Schroeter M, IrmLer M, French L, Bornard T, MacDonald HR, Tschopp J (1996) Activated B cells express functional Fas ligand. Eur J Immunol 26(3):721–724

    Article  CAS  PubMed  Google Scholar 

  21. Lundy SK (2009) Killer B lymphocytes: the evidence and the potential. Inflammation Research 58(7):345–357. https://doi.org/10.1007/s00011-009-0014-x

    Article  CAS  PubMed  Google Scholar 

  22. Lundy SK, Lerman SP, Boros DL (2001) Soluble egg antigen-stimulated T helper lymphocyte apoptosis and evidence for cell death mediated by FasL(+) T and B cells during murine Schistosoma mansoni infection. Infect Immun 69(1):271–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lundy SK, Boros DL (2002) Fas ligand-expressing B-1a lymphocytes mediate CD4(+)-T-cell apoptosis during schistosomal infection: induction by interleukin 4 (IL-4) and IL-10. Infect Immun 70(2):812–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lundy SK, Berlin AA, Martens TF, Lukacs NW (2005) Deficiency of regulatory B cells increases allergic airway inflammation. Inflammation Research 54(12):514–521. https://doi.org/10.1007/s00011-005-1387-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lundy SK, Fox DA (2009) Reduced Fas ligand-expressing splenic CD5+ B lymphocytes in severe collagen-induced arthritis. Arthritis Res Ther 11(4):R128. https://doi.org/10.1186/ar2795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tian J, Zekzer D, Hanssen L, Lu Y, Olcott A, Kaufman DL (2001) Lipopolysaccharide-activated B cells down-regulate Th1 immunity and prevent autoimmune diabetes in nonobese diabetic mice. J Immunol 167(2):1081–1089

    Article  CAS  PubMed  Google Scholar 

  27. Montandon R, Korniotis S, Layseca-Espinosa E, Gras C, Megret J, Ezine S, Dy M, Zavala F (2013) Innate pro-B-cell progenitors protect against type 1 diabetes by regulating autoimmune effector T cells. Proc Natl Acad Sci U S A 110(24):E2199–E2208. https://doi.org/10.1073/pnas.1222446110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bonardelle D, Benihoud K, Kiger N, Bobe P (2005) B lymphocytes mediate Fas-dependent cytotoxicity in MRL/lpr mice. J Leukoc Biol 78(5):1052–1059. https://doi.org/10.1189/jlb.0904536

    Article  CAS  PubMed  Google Scholar 

  29. Zuniga E, Motran CC, Montes CL, Yagita H, Gruppi A (2002) Trypanosoma cruzi infection selectively renders parasite-specific IgG+ B lymphocytes susceptible to Fas/Fas ligand-mediated fratricide. J Immunol 168(8):3965–3973

    Article  CAS  PubMed  Google Scholar 

  30. Minagawa R, Okano S, Tomita Y, Kishihara K, Yamada H, Nomoto K, Shimada M, Maehara Y, Sugimachi K, Yoshikai Y, Nomoto K (2004) The critical role of Fas-Fas ligand interaction in donor-specific transfusion-induced tolerance to H-Y antigen. Transplantation 78(6):799–806. https://doi.org/10.1097/01.tp.0000129799.96439.6f

    Article  CAS  PubMed  Google Scholar 

  31. Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson TA (1995) Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270(5239):1189–1192

    Article  CAS  PubMed  Google Scholar 

  32. Mohan RR, Liang Q, Kim WJ, Helena MC, Baerveldt F, Wilson SE (1997) Apoptosis in the cornea: further characterization of Fas/Fas ligand system. Exp Eye Res 65(4):575–589

    Article  CAS  PubMed  Google Scholar 

  33. Stuart PM, Griffith TS, Usui N, Pepose J, Yu X, Ferguson TA (1997) CD95 ligand (FasL)-induced apoptosis is necessary for corneal allograft survival. J Clin Invest 99(3):396–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jorgensen A, Wiencke AK, la Cour M, Kaestel CG, Madsen HO, Hamann S, Lui GM, Scherfig E, Prause JU, Svejgaard A, Odum N, Nissen MH, Ropke C (1998) Human retinal pigment epithelial cell-induced apoptosis in activated T cells. Invest Ophthalmol Vis Sci 39(9):1590–1599

    CAS  PubMed  Google Scholar 

  35. Sapi E, Brown WD, Aschkenazi S, Lim C, Munoz A, Kacinski BM, Rutherford T, Mor G (2002) Regulation of Fas ligand expression by estrogen in normal ovary. J Soc Gynecol Investig 9(4):243–250

    Article  CAS  PubMed  Google Scholar 

  36. Li H, Ren J, Dhabuwala CB, Shichi H (1997) Immunotolerance induced by intratesticular antigen priming: expression of TGF-beta, Fas and Fas ligand. Ocul Immunol Inflamm 5(2):75–84

    Article  CAS  PubMed  Google Scholar 

  37. Uckan D, Steele A, Cherry WBY, Chamizo W, Koutsonikolis A, Gilbert-Barness E, Good RA (1997) Trophoblasts express Fas ligand: a proposed mechanism for immune privilege in placenta and maternal invasion. Mol Hum Reprod 3(8):655–662. https://doi.org/10.1093/molehr/3.8.655

    Article  CAS  PubMed  Google Scholar 

  38. Kauma SW, Huff TF, Hayes N, Nilkaeo A (1999) Placental Fas ligand expression is a mechanism for maternal immune tolerance to the fetus. J Clin Endocrinol Metab 84(6):2188–2194

    CAS  PubMed  Google Scholar 

  39. Silvestris F, Tucci M, Cafforio P, Dammacco F (2001) Fas-L up-regulation by highly malignant myeloma plasma cells: role in the pathogenesis of anemia and disease progression. Blood 97(5):1155–1164

    Article  CAS  PubMed  Google Scholar 

  40. Tinhofer I, Marschitz I, Kos M, Henn T, Egle A, Villunger A, Greil R (1998) Differential sensitivity of CD4+ and CD8+ T lymphocytes to the killing efficacy of Fas (Apo-1/CD95) ligand+ tumor cells in B chronic lymphocytic leukemia. Blood 91(11):4273–4281

    Article  CAS  PubMed  Google Scholar 

  41. Lettau M, Paulsen M, Kabelitz D, Janssen O (2009) FasL expression and reverse signalling. Results Probl Cell Differ 49:49–61. https://doi.org/10.1007/400_2008_21

    Article  CAS  PubMed  Google Scholar 

  42. Kavurma MM, Khachigian LM (2003) Signaling and transcriptional control of Fas ligand gene expression. Cell Death Differ 10(1):36–44

    Article  CAS  PubMed  Google Scholar 

  43. Chow WA, Fang JJ, Yee JK (2000) The IFN regulatory factor family participates in regulation of Fas ligand gene expression in T cells. J Immunol 164(7):3512–3518

    Article  CAS  PubMed  Google Scholar 

  44. Sayed D, He M, Hong C, Gao S, Rane S, Yang Z, Abdellatif M (2010) MicroRNA-21 is a downstream effector of AKT that mediates its antiapoptotic effects via suppression of Fas ligand. J Biol Chem 285(26):20281–20290. https://doi.org/10.1074/jbc.M110.109207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li JH, Rosen D, Ronen D, Behrens CK, Krammer PH, Clark WR, Berke G (1998) The regulation of CD95 ligand expression and function in CTL. J Immunol 161(8):3943–3949

    Article  CAS  PubMed  Google Scholar 

  46. Zuccato E, Blott EJ, Holt O, Sigismund S, Shaw M, Bossi G, Griffiths GM (2007) Sorting of Fas ligand to secretory lysosomes is regulated by mono-ubiquitylation and phosphorylation. J Cell Sci 120(Pt 1):191–199. https://doi.org/10.1242/jcs.03315

    Article  CAS  PubMed  Google Scholar 

  47. Mincheff M, Loukinov D, Zoubak S, Hammett M, Meryman H (1998) Fas and Fas ligand expression on human peripheral blood leukocytes. Vox Sang 74(2):113–121

    Article  CAS  PubMed  Google Scholar 

  48. Martinez-Lorenzo MJ, Anel A, Gamen S, Monle NI, Lasierra P, Larrad L, Pineiro A, Alava MA, Naval J (1999) Activated human T cells release bioactive Fas ligand and APO2 ligand in microvesicles. J Immunol 163(3):1274–1281

    Article  CAS  PubMed  Google Scholar 

  49. Jodo S, Xiao S, Hohlbaum A, Strehlow D, Marshak-Rothstein A, Ju ST (2001) Apoptosis-inducing membrane vesicles. A novel agent with unique properties. J Biol Chem 276(43):39938–39944. https://doi.org/10.1074/jbc.M107005200

    Article  CAS  PubMed  Google Scholar 

  50. Sabapatha A, Gercel-Taylor C, Taylor DD (2006) Specific isolation of placenta-derived exosomes from the circulation of pregnant women and their immunoregulatory consequences. Am J Reprod Immunol 56(5–6):345–355. https://doi.org/10.1111/j.1600-0897.2006.00435.x

    Article  CAS  PubMed  Google Scholar 

  51. McKechnie NM, King BC, Fletcher E, Braun G (2006) Fas-ligand is stored in secretory lysosomes of ocular barrier epithelia and released with microvesicles. Exp Eye Res 83(2):304–314. https://doi.org/10.1016/j.exer.2005.11.028

    Article  CAS  PubMed  Google Scholar 

  52. Kang SM, Schneider DB, Lin Z, Hanahan D, Dichek DA, Stock PG, Baekkeskov S (1997) Fas ligand expression in islets of Langerhans does not confer immune privilege and instead targets them for rapid destruction. Nat Med 3(7):738–743

    Article  CAS  PubMed  Google Scholar 

  53. Takeuchi T, Ueki T, Nishimatsu H, Kajiwara T, Ishida T, Jishage K, Ueda O, Suzuki H, Li B, Moriyama N, Kitamura T (1999) Accelerated rejection of Fas ligand-expressing heart grafts. J Immunol 162(1):518–522

    Article  CAS  PubMed  Google Scholar 

  54. Gregory MS, Repp AC, Holhbaum AM, Saff RR, Marshak-Rothstein A, Ksander BR (2002) Membrane Fas ligand activates innate immunity and terminates ocular immune privilege. J Immunol 169(5):2727–2735

    Article  CAS  PubMed  Google Scholar 

  55. Mariani SM, Matiba B, BaumLer C, Krammer PH (1995) Regulation of cell surface APO-1/Fas (CD95) ligand expression by metalloproteases. Eur J Immunol 25(8):2303–2307

    Article  CAS  PubMed  Google Scholar 

  56. Powell WC, Fingleton B, Wilson CL, Boothby M, Matrisian LM (1999) The metalloproteinase matrilysin proteolytically generates active soluble Fas ligand and potentiates epithelial cell apoptosis. Curr Biol 9(24):1441–1447

    Article  CAS  PubMed  Google Scholar 

  57. Sano Y, Yamada J, Ishino Y, Adachi W, Kawasaki S, Suzuki T, Kinoshita S, Okuyama T, Azuma N (2002) Non-cleavable mutant Fas ligand transfection of donor cornea abrogates ocular immune privilege. Exp Eye Res 75(4):475–483

    Article  CAS  PubMed  Google Scholar 

  58. Lundy SK, Klinker MW, Fox DA (2015) Killer B lymphocytes and their fas ligand positive exosomes as inducers of immune tolerance. Front Immunol 6:122. https://doi.org/10.3389/fimmu.2015.00122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Klinker MW, Reed TJ, Fox DA, Lundy SK (2013) Interleukin-5 supports the expansion of Fas ligand-expressing killer B cells that induce antigen-specific apoptosis of CD4(+) T cells and secrete Interleukin-10. PLoS One 8(8):e70131. https://doi.org/10.1371/journal.pone.0070131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Martin F, Kearney JF (2001) B1 cells: similarities and differences with other B cell subsets. Curr Opin Immunol 13(2):195–201

    Article  CAS  PubMed  Google Scholar 

  61. Yang Y, Tung JW, Ghosn EE, Herzenberg LA, Herzenberg LA (2007) Division and differentiation of natural antibody-producing cells in mouse spleen. Proc Natl Acad Sci U S A 104(11):4542–4546. https://doi.org/10.1073/pnas.0700001104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kantor AB, Stall AM, Adams S, Watanabe K, Herzenberg LA (1995) De novo development and self-replenishment of B cells. Int Immunol 7(1):55–68

    Article  CAS  PubMed  Google Scholar 

  63. Yoshimoto M, Montecino-Rodriguez E, Ferkowicz MJ, Porayette P, Shelley WC, Conway SJ, Dorshkind K, Yoder MC (2011) Embryonic day 9 yolk sac and intra-embryonic hemogenic endothelium independently generate a B-1 and marginal zone progenitor lacking B-2 potential. Proc Natl Acad Sci U S A 108(4):1468–1473. https://doi.org/10.1073/pnas.1015841108

    Article  PubMed  PubMed Central  Google Scholar 

  64. Klinker MW, Lundy SK (2012) Multiple mechanisms of immune suppression by B lymphocytes. Mol Med 18:123–137. https://doi.org/10.2119/molmed.2011.00333

    Article  CAS  PubMed  Google Scholar 

  65. Morita Y, Gupta R, Seidl KM, McDonagh KT, Fox DA (2005) Cytokine production by dendritic cells genetically engineered to express IL-4: induction of Th2 responses and differential regulation of IL-12 and IL-23 synthesis. J Gene Med 7(7):869–877. https://doi.org/10.1002/jgm.730

    Article  CAS  PubMed  Google Scholar 

  66. Schultze JL, Michalak S, Seamon MJ, Dranoff G, Jung K, Daley J, Delgado JC, Gribben JG, Nadler LM (1997) CD40-activated human B cells: an alternative source of highly efficient antigen presenting cells to generate autologous antigen-specific T cells for adoptive immunotherapy. J Clin Invest 100(11):2757–2765. https://doi.org/10.1172/JCI119822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Taitano SH, van der Vlugt L, Shea MM, Yang J, Lukacs NW, Lundy SK (2018) Differential influence on regulatory B cells by TH2 cytokines affects protection in allergic airway disease. J Immunol 201(7):1865–1874. https://doi.org/10.4049/jimmunol.1800206

    Article  CAS  PubMed  Google Scholar 

  68. Klinker MW, Lizzio V, Reed TJ, Fox DA, Lundy SK (2014) Human B cell-derived Lymphoblastoid cell lines constitutively produce Fas ligand and secrete MHCII(+)FasL(+) killer Exosomes. Front Immunol 5:144. https://doi.org/10.3389/fimmu.2014.00144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Herzenberg LA, Tung J, Moore WA, Herzenberg LA, Parks DR (2006) Interpreting flow cytometry data: a guide for the perplexed. Nat Immunol 7(7):681–685. https://doi.org/10.1038/ni0706-681

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lundy, S.K., Taitano, S.H., van der Vlugt, L.E.P.M. (2021). Characterization and Activation of Fas Ligand-Producing Mouse B Cells and Their Killer Exosomes. In: Mion, F., Tonon, S. (eds) Regulatory B Cells. Methods in Molecular Biology, vol 2270. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1237-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1237-8_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1236-1

  • Online ISBN: 978-1-0716-1237-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics