Skip to main content

Measuring Translation Efficiency by RNA Immunoprecipitation of Translation Initiation Factors

  • 762 Accesses

Part of the Methods in Molecular Biology book series (MIMB,volume 2267)

Abstract

Eukaryotic mRNAs are bound by a multitude of RNA binding proteins (RBPs) that control their localization, transport, and translation. Measuring the rate of translation of mRNAs is critical for understanding the factors and pathways involved in gene expression. In this chapter, we present a method to compare the rate of translation of individual mRNA species based on the fraction of mRNA bound by a specific ribonucleoprotein involved in the general translation machinery. The ribonucleoprotein complex is immunoprecipitated using an antibody for the RBP, followed by RT-PCR to semi-quantitatively determine the amount of an individual mRNA fraction bound by a translation regulating protein such as eIF4E.

Key words

  • RNA immunoprecipitation
  • Translation
  • eIF4E

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-1217-0_5
  • Chapter length: 7 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-1217-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Orphanides G, Reinberg D (2002) A unified theory of gene expression. Cell 108(4):439–451

    CAS  CrossRef  Google Scholar 

  2. Chen K, Rajewsky N (2007) The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 8(2):93–103. https://doi.org/10.1038/nrg1990

    CAS  CrossRef  PubMed  Google Scholar 

  3. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63. https://doi.org/10.1038/nrg2484

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  4. Keene JD (2007) RNA regulons: coordination of post-transcriptional events. Nat Rev Genet 8(7):533–543. https://doi.org/10.1038/nrg2111

    CAS  CrossRef  PubMed  Google Scholar 

  5. Zhang J, Chen X (2008) Posttranscriptional regulation of p53 and its targets by RNA-binding proteins. Curr Mol Med 8(8):845–849

    CAS  CrossRef  Google Scholar 

  6. Richter JD, Sonenberg N (2005) Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature 433(7025):477–480. https://doi.org/10.1038/nature03205

    CAS  CrossRef  PubMed  Google Scholar 

  7. Pollard JW (1994) The in vivo isotopic labeling of proteins for polyacrylamide gel electrophoresis. Methods Mol Biol 32:67–72. https://doi.org/10.1385/0-89603-268-X:67

    CAS  CrossRef  PubMed  Google Scholar 

  8. Chasse H, Boulben S, Costache V, Cormier P, Morales J (2017) Analysis of translation using polysome profiling. Nucleic Acids Res 45(3):e15. https://doi.org/10.1093/nar/gkw907

    CAS  CrossRef  PubMed  Google Scholar 

  9. Kudla M, Karginov FV (2016) Measuring mRNA translation by polysome profiling. Methods Mol Biol 1421:127–135. https://doi.org/10.1007/978-1-4939-3591-8_11

    CAS  CrossRef  PubMed  Google Scholar 

  10. Zuccotti P, Modelska A (2016) Studying the Translatome with Polysome profiling. Methods Mol Biol 1358:59–69. https://doi.org/10.1007/978-1-4939-3067-8_4

    CAS  CrossRef  PubMed  Google Scholar 

  11. Cho SJ, Rossi A, Jung YS, Yan W, Liu G, Zhang J, Zhang M, Chen X (2013) Ninjurin1, a target of p53, regulates p53 expression and p53-dependent cell survival, senescence, and radiation-induced mortality. Proc Natl Acad Sci U S A 110(23):9362–9367. https://doi.org/10.1073/pnas.1221242110

    CrossRef  PubMed  PubMed Central  Google Scholar 

  12. Yang HJ, Zhang J, Yan W, Cho SJ, Lucchesi C, Chen M, Huang EC, Scoumanne A, Zhang W, Chen X (2017) Ninjurin 1 has two opposing functions in tumorigenesis in a p53-dependent manner. Proc Natl Acad Sci U S A 114(43):11500–11505. https://doi.org/10.1073/pnas.1711814114

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  13. Zhang J, Cho SJ, Shu L, Yan W, Guerrero T, Kent M, Skorupski K, Chen H, Chen X (2011) Translational repression of p53 by RNPC1, a p53 target overexpressed in lymphomas. Genes Dev 25(14):1528–1543. https://doi.org/10.1101/gad.2069311

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  14. Zhang Y, Qian Y, Zhang J, Yan W, Jung YS, Chen M, Huang E, Lloyd K, Duan Y, Wang J, Liu G, Chen X (2017) Ferredoxin reductase is critical for p53-dependent tumor suppression via iron regulatory protein 2. Genes Dev 31(12):1243–1256. https://doi.org/10.1101/gad.299388.117

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  15. Zhang M, Zhang Y, Xu E, Mohibi S, de Anda DM, Jiang Y, Zhang J, Chen X (2018) Rbm24, a target of p53, is necessary for proper expression of p53 and heart development. Cell Death Differ 25(6):1118–1130. https://doi.org/10.1038/s41418-017-0029-8

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  16. Peritz T, Zeng F, Kannanayakal TJ, Kilk K, Eiriksdottir E, Langel U, Eberwine J (2006) Immunoprecipitation of mRNA-protein complexes. Nat Protoc 1(2):577–580. https://doi.org/10.1038/nprot.2006.82

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinbin Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s)

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Lucchesi, C., Mohibi, S., Chen, X. (2021). Measuring Translation Efficiency by RNA Immunoprecipitation of Translation Initiation Factors. In: Manfredi, J.J. (eds) Cell Cycle Checkpoints. Methods in Molecular Biology, vol 2267. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1217-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1217-0_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1216-3

  • Online ISBN: 978-1-0716-1217-0

  • eBook Packages: Springer Protocols