Skip to main content

Translational Research in Neuroimmunology: Cognition

  • Protocol
  • First Online:
Translational Methods for Multiple Sclerosis Research

Part of the book series: Neuromethods ((NM,volume 166))

Abstract

Cognitive impairment affects up to 70% of patients with multiple sclerosis (MS). It may already be present in the early stages of disease and impedes with a patient’s ability to maintain employment, take part in activities of daily life, and fully participate in society. Similar to the clinical heterogeneity of MS , there is great variability in cognitive symptoms among patients. Given the impact of such deficits on everyday functioning, an increasing interest in diagnosis and treatment of cognitive impairment has arisen.

This chapter aims to present an overview of those cognitive domains most commonly affected in MS , common approaches to assess the respective cognitive functions as well as procedures which may facilitate cross-species study of cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amato MP, Ponziani G, Pracucci G, Bracco L, Siracusa G, Amaducci L (1995) Cognitive impairment in early-onset multiple sclerosis: pattern, predictors, and impact on everyday life in a 4-year follow-up. Arch Neurol 52(2):168–172

    Article  CAS  PubMed  Google Scholar 

  2. Benedict RHB, Wahlig E, Bakshi R, Fishman I, Munschauer F, Zivadinov R, Weinstock-Guttman B (2005) Predicting quality of life in multiple sclerosis: accounting for physical disability, fatigue, cognition, mood disorder, personality, and behavior change. J Neurol Sci 231(1–2):29–34

    Article  PubMed  Google Scholar 

  3. Goverover Y, Chiaravalloti N, DeLuca J (2015) Brief international cognitive assessment for multiple sclerosis (BICAMS) and performance of everyday life tasks: actual reality. Mult Scler J 22(4):544–550

    Article  Google Scholar 

  4. Morrow SA, Drake A, Zivadinov R, Munschauer F, Weinstock-Guttman B, Benedict RHB (2010) Predicting loss of employment over three years in multiple sclerosis: clinically meaningful cognitive decline. Clin Neuropsychol 24(7):1131–1145

    Article  PubMed  Google Scholar 

  5. Raggi A, Covelli V, Schiavolin S, Scaratti C, Leonardi M, Willems M (2016) Work-related problems in multiple sclerosis: a literature review on its associates and determinants. Disabil Rehabil 38(10):936–944

    Article  PubMed  Google Scholar 

  6. Hoogs M, Kaur S, Smerbeck A, Weinstock-Guttman B, Benedict RHB (2011) Cognition and physical disability in predicting health-related quality of life in multiple sclerosis. Int J MS Care 13(2):57–63

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kalmar JH, Gaudino EA, Moore NB, Halper J, DeLuca J (2008) The relationship between cognitive deficits and everyday functional activities in multiple sclerosis. Neuropsychology 22(4):442–449

    Article  PubMed  Google Scholar 

  8. Lincoln NB, Radford KA (2008) Cognitive abilities as predictors of safety to drive in people with multiple sclerosis. Mult Scler J 14(1):123–128

    Article  CAS  Google Scholar 

  9. Rao SM, Leo GJ, Bernardin L, Unverzagt F (1991) Cognitive dysfunction in multiple sclerosis. I. Frequency, patterns, and prediction. Neurology 41(5):685–691

    Article  CAS  PubMed  Google Scholar 

  10. Larner AJ (2013) Neuropsychological neurology: the neurocognitive impairments of neurological disorders, 2nd edn. Cambridge University Press, Cambridge, U.K.

    Book  Google Scholar 

  11. DeLuca GC, Yates RL, Beale H, Morrow SA (2015) Cognitive impairment in multiple sclerosis: clinical, radiologic and pathologic insights. Brain Pathol 25(1):79–98

    Article  PubMed  Google Scholar 

  12. James W (1890) Attention. In: The principles of psychology. Henry Holt and Company, New York, NY, USA, pp 402–458

    Google Scholar 

  13. Potagas C, Giogkaraki E, Koutsis G, Mandellos D, Tsirempolou E, Sfagos C, Vassilopoulos D (2008) Cognitive impairment in different MS subtypes and clinically isolated syndromes. J Neurol Sci 267(1–2):100–106

    Article  PubMed  Google Scholar 

  14. Nilsson PC, Rorsman I, Larsson EM, Norrving B, Sandberg-Wollheim M (2008) Cognitive dysfunction 24-31 years after isolated optic neuritis. Mult Scler 14(7):913–918

    Article  CAS  PubMed  Google Scholar 

  15. Huijbregts SCJ, Kalkers NF, de Sonneville LMJ, de Groot V, Polman CH (2006) Cognitive impairment and decline in different MS subtypes. J Neurol Sci 245(1–2):187–194

    Article  PubMed  Google Scholar 

  16. Smith A (1973) Symbol digit modalities test. Western Psychological Services, Los Angeles, CA

    Google Scholar 

  17. Strauss E, Sherman EM, Spreen O (2006) A compendium of neuropsychological tests: administration, norms, and commentary. American Chemical Society, Washington, D.C.

    Google Scholar 

  18. Benedict RH, DeLuca J, Phillips G, LaRocca N, Hudson LD, Rudick R, Multiple Sclerosis Outcome Assessments Consortium (2017) Validity of the symbol digit modalities test as a cognition performance outcome measure for multiple sclerosis. Mult Scler 23(5):721–733

    Article  PubMed  PubMed Central  Google Scholar 

  19. Reitan RM, Wolfson D (1985) The Halstead Reitan neuropsychological test battery: theory and clinical interpretation. Neuropsychology Press, Tucson, AZ

    Google Scholar 

  20. Schulz D, Kopp B, Kunkel A, Faiss JH (2006) Cognition in the early stage of multiple sclerosis. J Neurol 253(8):1002–1010

    Article  PubMed  Google Scholar 

  21. Rao SM (1986) Neuropsychology of multiple sclerosis: a critical review. J Clin Exp Neuropsychol 8(5):503–542

    Article  CAS  PubMed  Google Scholar 

  22. Rao SM, Leo GJ, St. Aubin-Faubert P (1989) On the nature of memory disturbance in multiple sclerosis. J Clin Exp Neuropsychol 11(5):699–712

    Article  CAS  PubMed  Google Scholar 

  23. Kocer B, Unal T, Nazliel B (2008) Evaluating sub-clinical cognitive dysfunction and event-related potentials (P300) in clinically isolated syndrome. Neurol Sci 29(6):435–444

    Article  PubMed  Google Scholar 

  24. Thornton AE, Raz N, Tucker KA (2002) Memory in multiple sclerosis: contextual encoding deficits. J Int Neuropsychol Soc 8(3):395–409

    Article  PubMed  Google Scholar 

  25. DeLuca J, Gaudino EA, Diamond BJ, Christodoulou C, Engel RA (1998) Acquisition and storage deficits in multiple sclerosis. J Clin Exp Neuropsychol 20(3):376–390

    Article  CAS  PubMed  Google Scholar 

  26. Feinstein A, Kartsounis LD, Miller DH, Youl BD, Ron MA (1992) Clinically isolated lesions of the type seen in multiple sclerosis: a cognitive, psychiatric, and MRI follow up study. J Neurol Neurosurg Psychiatry 55(10):869–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Glanz BI, Holland CM, Gauthier SA, Amunwa EL, Liptak Z, Houtchens MK et al (2007) Cognitive dysfunction in patients with clinically isolated syndromes or newly diagnosed multiple sclerosis. Mult Scler J 13(8):1004–1010

    Article  CAS  Google Scholar 

  28. Rey A (1964) L ‘examen clinique en psychologie. Presses Universitaires de France, Paris

    Google Scholar 

  29. Schmidt M (1996) Rey auditory verbal learning test: a handbook. Western Psychological Services, Los Angeles, CA

    Google Scholar 

  30. MĂ¼ller H, Hasse-Sander I, Horn R, Helmstädter C, Elger CE (1997) Rey auditory verbal learning test: structure of a modified German version. J Clin Psychol 53(7):663–671

    Article  PubMed  Google Scholar 

  31. Miranda JP, Valencia RR (1997) English and Spanish versions of a memory test: word-length effects versus spoken duration effects. Hisp J Behav Sci 19(2):171–181

    Article  Google Scholar 

  32. Lee TMC (2003) Normative data: neuropsychological measures for Hong Kong Chinese. Neuropsychology Laboratory, The University of Hong Kong, Hong Kong

    Google Scholar 

  33. Wechsler D (2009) Wechsler memory scale—fourth edition (WMS–IV) technical and interpretive manual. Pearson, San Antonio, TX

    Google Scholar 

  34. Feuillet L, Reuter F, Audoin B, Malikova I, Barrau K, Cherif AA, Pelletier J (2007) Early cognitive impairment in patients with clinically isolated syndrome suggestive of multiple sclerosis. Mult Scler J 13(1):124–127

    Article  CAS  Google Scholar 

  35. Leavitt VM, Wylie G, Krch D, Chiaravalloti N, DeLuca J, Sumowski JF (2014) Does slowed processing speed account for executive deficits in multiple sclerosis? Evidence from neuropsychological performance and structural neuroimaging. Rehabil Psychol 59(4):422–428

    Article  PubMed  Google Scholar 

  36. Anhoque CF, Biccas Neto L, Domingues SCA, Teixeira AL, Domingues RB (2012) Cognitive impairment in patients with clinically isolated syndrome. Dement Neuropsychol 6(4):266–269

    Article  PubMed  PubMed Central  Google Scholar 

  37. Henry JD, Beatty WW (2006) Verbal fluency deficits in multiple sclerosis. Neuropsychologia 44(7):1166–1174

    Article  PubMed  Google Scholar 

  38. Huijbregts SCJ, Kalkers NF, de Sonneville LMJ, de Groot V, Reuling IEW, Polman CH (2004) Differences in cognitive impairment of relapsing remitting, secondary, and primary progressive MS. Neurology 63(2):335–339

    Article  CAS  PubMed  Google Scholar 

  39. Gronwall DM (1977) Paced auditory serial-addition task: a measure of recovery from concussion. Percept Mot Skills 44(2):367–373

    Article  CAS  PubMed  Google Scholar 

  40. Cutter GR, Baier ML, Rudick RA, Cookfair DL, Fischer JS, Petkau J, Ellison GW (1999) Development of a multiple sclerosis functional composite as a clinical trial outcome measure. Brain 122(5):871–882

    Article  PubMed  Google Scholar 

  41. Rao SM (1990) Neuropsychological screening battery for multiple sclerosis. National Multiple Sclerosis Society, New York, NY, USA

    Google Scholar 

  42. Aschenbrenner S, Tucha O, Lange KW (2001) Regensburger WortflĂ¼ssigkeits-Test. Hogrefe, Göttingen

    Google Scholar 

  43. Artiola L, Hermisollo D, Heaton R, Pardee RE (1999) Manual de normas y procedimientos para la baterĂ­a neuropsicolĂ³gica en español [manual of norms and procedures for the Spanish neuropsychological battery]. m Press, Tucson, AZ

    Google Scholar 

  44. Vleugels L, Lafosse C, van Nunen AN, Nachtergaele S, Ketelaer P, Charlier M, Vandenbussche E (2000) Visuoperceptual impairment in multiple sclerosis patients diagnosed with neuropsychological tasks. Mult Scler 6(4):241–254

    Article  CAS  PubMed  Google Scholar 

  45. Barnes CA (1979) Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J Comp Physiol Psychol 93(1):74–104

    Article  CAS  PubMed  Google Scholar 

  46. Rosenfeld CS, Ferguson SA (2014) Barnes maze testing strategies with small and large rodent models. J Vis Exp 84:e51194

    Google Scholar 

  47. Harrison FE, Reiserer RS, Tomarken AJ, McDonald MP (2006) Spatial and nonspatial escape strategies in the Barnes maze. Learn Mem 13(6):809–819

    Article  PubMed  PubMed Central  Google Scholar 

  48. Paul CM, Magda G, Abel S (2009) Spatial memory: theoretical basis and comparative review on experimental methods in rodents. Behav Brain Res 203(2):151–164

    Article  PubMed  Google Scholar 

  49. Holtzman DA, Harris TW, Aranguren G, Bostock E (1999) Spatial learning of an escape task by young corn snakes, Elaphe guttata guttata. Anim Behav 57(1):51–60

    Article  CAS  PubMed  Google Scholar 

  50. Brown S, Strausfeld N (2009) The effect of age on a visual learning task in the American cockroach. Learn Mem 16(3):210–223

    Article  PubMed  Google Scholar 

  51. Languille S, Aujard F, Pifferi F (2012) Effect of dietary fish oil supplementation on the exploratory activity, emotional status and spatial memory of the aged mouse lemur, a non-human primate. Behav Brain Res 235(2):280–286

    Article  CAS  PubMed  Google Scholar 

  52. Hollinger KR, Alt J, Riehm AM, Slusher BS, Kaplin AI (2016) Dose-dependent inhibition of GCPII to prevent and treat cognitive impairment in the EAE model of multiple sclerosis. Brain Res 1635:105–112

    Article  CAS  PubMed  Google Scholar 

  53. CANTAB® [Cognitive assessment software]. Cambridge Cognition (2019). All rights reserved. www.cantab.com

  54. Weed MR, Taffe MA, Polis I, Roberts AC, Robbins TW, Koob GF et al (1999) Performance norms for a rhesus monkey neuropsychological testing battery: acquisition and long-term performance. Cogn Brain Res 8(3):185–201

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maren Person .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Person, M., Becke, M. (2021). Translational Research in Neuroimmunology: Cognition. In: Groppa, S., G. Meuth, S. (eds) Translational Methods for Multiple Sclerosis Research. Neuromethods, vol 166. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1213-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1213-2_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1212-5

  • Online ISBN: 978-1-0716-1213-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics