Skip to main content

Bionoi: A Voronoi Diagram-Based Representation of Ligand-Binding Sites in Proteins for Machine Learning Applications

Part of the Methods in Molecular Biology book series (MIMB,volume 2266)

Abstract

Bionoi is a new software to generate Voronoi representations of ligand-binding sites in proteins for machine learning applications. Unlike many other deep learning models in biomedicine, Bionoi utilizes off-the-shelf convolutional neural network architectures, reducing the development work without sacrificing the performance. When initially generating images of binding sites, users have the option to color the Voronoi cells based on either one of six structural, physicochemical, and evolutionary properties, or a blend of all six individual properties. Encouragingly, after inputting images generated by Bionoi into the convolutional autoencoder, the network was able to effectively learn the most salient features of binding pockets. The accuracy of the generated model is evaluated both visually and numerically through the reconstruction of binding site images from the latent feature space. The generated feature vectors capture well various properties of binding sites and thus can be applied in a multitude of machine learning projects. As a demonstration, we trained the ResNet-18 architecture from Microsoft on Bionoi images to show that it is capable to effectively classify nucleotide- and heme-binding pockets against a large dataset of control pockets binding a variety of small molecules. Bionoi is freely available to the research community at https://github.com/CSBG-LSU/BionoiNet

Key words

  • Bionoi
  • Machine learning
  • Deep learning
  • Convolutional neural network
  • Voronoi diagrams
  • Ligand-binding site classification
  • Computer-aided drug discovery

This is a preview of subscription content, access via your institution.

Buying options

Protocol
EUR   44.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   93.08
Price includes VAT (Finland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   120.99
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   175.99
Price includes VAT (Finland)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 2818–2826

    Google Scholar 

  2. Lipton ZC, Berkowitz J, Elkan C (2015) A critical review of recurrent neural networks for sequence learning. arXiv:1506.00019

    Google Scholar 

  3. Li D, Dong Y (2014) Deep learning: methods and applications. Found Trends Signal Process 7(3–4):197–387. https://doi.org/10.1561/2000000039

    CrossRef  Google Scholar 

  4. Najafabadi MM, Villanustre F, Khoshgoftaar TM, Seliya N, Wald R, Muharemagic E (2015) Deep learning applications and challenges in big data analytics. J Big Data 2(1):1. https://doi.org/10.1186/s40537-014-0007-7

    CrossRef  Google Scholar 

  5. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Paper presented at the Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1, Lake Tahoe, Nevada

    Google Scholar 

  6. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 770–778

    Google Scholar 

  7. Hou J, Adhikari B, Cheng J (2018) DeepSF: deep convolutional neural network for mapping protein sequences to folds. Bioinformatics 34(8):1295–1303. https://doi.org/10.1093/bioinformatics/btx780

    CrossRef  CAS  PubMed  Google Scholar 

  8. Jimenez J, Doerr S, Martinez-Rosell G, Rose AS, De Fabritiis G (2017) DeepSite: protein-binding site predictor using 3D-convolutional neural networks. Bioinformatics 33(19):3036–3042. https://doi.org/10.1093/bioinformatics/btx350

    CrossRef  CAS  PubMed  Google Scholar 

  9. Skalic M, Varela-Rial A, Jimenez J, Martinez-Rosell G, De Fabritiis G (2018) LigVoxel: Inpainting binding pockets using 3D-convolutional neural networks. Bioinformatics 35:243. https://doi.org/10.1093/bioinformatics/bty583

    CrossRef  CAS  Google Scholar 

  10. Cui Y, Dong Q, Hong D, Wang X (2019) Predicting protein-ligand binding residues with deep convolutional neural networks. BMC Bioinformatics 20(1):93. https://doi.org/10.1186/s12859-019-2672-1

    CrossRef  PubMed  PubMed Central  Google Scholar 

  11. Pu L, Govindaraj RG, Lemoine JM, Wu HC, Brylinski M (2019) DeepDrug3D: classification of ligand-binding pockets in proteins with a convolutional neural network. PLoS Comput Biol 15(2):e1006718. https://doi.org/10.1371/journal.pcbi.1006718

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kamnitsas K, Ledig C, Newcombe VFJ, Simpson JP, Kane AD, Menon DK, Rueckert D, Glocker B (2017) Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 36:61–78. https://doi.org/10.1016/j.media.2016.10.004

    CrossRef  PubMed  Google Scholar 

  13. Qureshi MNI, Oh J, Lee B (2019) 3D-CNN based discrimination of schizophrenia using resting-state fMRI. Artif Intell Med 98:10–17. https://doi.org/10.1016/j.artmed.2019.06.003

    CrossRef  PubMed  Google Scholar 

  14. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. Proc IEEE Conf Comput Vis Pattern Recognit:770–778

    Google Scholar 

  15. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition, p arXiv preprint arXiv:14091556

    Google Scholar 

  16. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. Proc IEEE Conf Comput Vis Pattern Recognit:1–9

    Google Scholar 

  17. Shi W, Lemoine JM, Shawky AA, Singha M, Pu L, Yang S, Ramanujam J, Brylinski M (2020) BionoiNet: ligand-binding site classification with off-the-shelf deep neural network. Bioinformatics 36:3077. https://doi.org/10.1093/bioinformatics/btaa094

    CrossRef  CAS  PubMed  Google Scholar 

  18. Asgari E, Mofrad MR (2015) Continuous distributed representation of biological sequences for deep proteomics and genomics. PLoS One 10(11):e0141287. https://doi.org/10.1371/journal.pone.0141287

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jaeger S, Fulle S, Turk S (2018) Mol2vec: unsupervised machine learning approach with chemical intuition. J Chem Inf Model 58(1):27–35. https://doi.org/10.1021/acs.jcim.7b00616

    CrossRef  CAS  PubMed  Google Scholar 

  20. Kawabata T (2011) Build-up algorithm for atomic correspondence between chemical structures. J Chem Inf Model 51(8):1775–1787. https://doi.org/10.1021/ci2001023

    CrossRef  CAS  PubMed  Google Scholar 

  21. O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: an open chemical toolbox. J Cheminform 3:33. https://doi.org/10.1186/1758-2946-3-33

  22. Cheng J, Randall AZ, Sweredoski MJ, Baldi P (2005) SCRATCH: a protein structure and structural feature prediction server. Nucleic Acids Res 33(Web Server):W72–W76. https://doi.org/10.1093/nar/gki396

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cavallo L, Kleinjung J, Fraternali F (2003) POPS: a fast algorithm for solvent accessible surface areas at atomic and residue level. Nucleic Acids Res 31(13):3364–3366. https://doi.org/10.1093/nar/gkg601

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  24. Trajtenberg F, Imelio JA, Machado MR, Larrieux N, Marti MA, Obal G, Mechaly AE, Buschiazzo A (2016) Regulation of signaling directionality revealed by 3D snapshots of a kinase:regulator complex in action. elife 5. https://doi.org/10.7554/eLife.21422

  25. Pu L, Govindaraj RG, Lemoine JM, Wu H-C, Brylinski M (2019) DeepDrug3D: classification of ligand-binding pockets in proteins with a convolutional neural network. PLoS Comp Biol 15(2):e1006718

    CrossRef  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported in part by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R35GM119524, by the US National Science Foundation award CCF-1619303, the Louisiana Board of Regents contract LEQSF(2016-19)-RD-B-03, and by the Center for Computation and Technology, Louisiana State University. Portions of this research were conducted with high-performance computational resources provided by Louisiana State University (HPC@LSU, http://www.hpc.lsu.edu). The authors are grateful to Ms. Manali Singha for visualizing molecular structures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Brylinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Feinstein, J., Shi, W., Ramanujam, J., Brylinski, M. (2021). Bionoi: A Voronoi Diagram-Based Representation of Ligand-Binding Sites in Proteins for Machine Learning Applications. In: Ballante, F. (eds) Protein-Ligand Interactions and Drug Design. Methods in Molecular Biology, vol 2266. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1209-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1209-5_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1208-8

  • Online ISBN: 978-1-0716-1209-5

  • eBook Packages: Springer Protocols