Skip to main content

Free Energy Calculations for Protein–Ligand Binding Prediction

  • Protocol
  • First Online:
Protein-Ligand Interactions and Drug Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2266))

Abstract

Computational prediction of protein–ligand binding involves initial determination of the binding mode and subsequent evaluation of the strength of the protein–ligand interactions, which directly correlates with ligand binding affinities. As a consequence of increasing computer power, rigorous approaches to calculate protein–ligand binding affinities, such as free energy perturbation (FEP) methods, are becoming an essential part of the toolbox of computer-aided drug design. In this chapter, we provide a general overview of these methods and introduce the QFEP modules, which are open-source API workflows based on our molecular dynamics (MD) package Q. The module QligFEP allows estimation of relative binding affinities along ligand series, while QresFEP is a module to estimate binding affinity shifts caused by single-point mutations of the protein. We herein provide guidelines for the use of each of these modules based on data extracted from ligand-design projects. While these modules are stand-alone, the combined use of the two workflows in a drug-design project yields complementary perspectives of the ligand binding problem, providing two sides of the same coin. The selected case studies illustrate how to use QFEP to approach the two key questions associated with ligand binding prediction: identifying the most favorable binding mode from different alternatives and establishing structure–affinity relationships that allow the rational optimization of hit compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang J, Wolf RM, Caldwell JW et al (2004) Development and testing of a general Amber force field. J Comput Chem 25:1157–1174

    Article  CAS  PubMed  Google Scholar 

  2. Hornak V, Abel R, Okur A et al (2006) Comparison of multiple amber force fields and development of improved protein backbone parameters, vol 65, p 712

    Google Scholar 

  3. Huang J, Mackerell AD (2013) CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem 34:2135–2145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Robertson MJ, Tirado-Rives J, Jorgensen WL (2015) Improved peptide and protein torsional energetics with the OPLS-AA force field. J Chem Theory Comput 11:3499–3509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dodda LS, De VIC, Tirado-Rives J et al (2017) LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands. Nucleic Acids Res 45:W331–W336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Il LK, Rui H, Pastor RW et al (2011) Brownian dynamics simulations of ion transport through the VDAC. Biophys J 100:611–619

    Article  CAS  Google Scholar 

  7. Wong CF, McCammon JA (1986) Dynamics and Design of Enzymes and Inhibitors. J Am Chem Soc 108:3830–3832

    Article  CAS  Google Scholar 

  8. Cournia Z, Allen B, Sherman W (2017) Relative binding free energy calculations in drug discovery: recent advances and practical considerations. J Chem Inf Model 57:2911–2937

    Article  CAS  PubMed  Google Scholar 

  9. Loeffler HH, Michel J, Woods C (2015) FESetup: automating setup for alchemical free energy simulations. J Chem Inf Model 55:2485–2490

    Article  CAS  PubMed  Google Scholar 

  10. Liu S, Wu Y, Lin T et al (2013) Lead optimization mapper: automating free energy calculations for lead optimization. J Comput Aided Mol Des 27:755–770

    Article  CAS  PubMed  Google Scholar 

  11. Homeyer N, Gohlke H (2013) FEW: a workflow tool for free energy calculations of ligand binding. J Comput Chem 34:965–973

    Article  CAS  PubMed  Google Scholar 

  12. Wang L, Wu Y, Deng Y et al (2015) Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. J Am Chem Soc 137:2695–2703

    Article  CAS  PubMed  Google Scholar 

  13. Christ CD, Fox T (2014) Accuracy assessment and automation of free energy calculations for drug design. J Chem Inf Model 54:108–120

    Article  CAS  PubMed  Google Scholar 

  14. Jespers W, Esguerra M, Åqvist J et al (2019) QligFEP: an automated workflow for small molecule free energy calculations in Q. J Cheminform 11:1–16

    Article  CAS  Google Scholar 

  15. Jespers W, Isaksen GV, Andberg TAH et al (2019) QresFEP: an automated protocol for free energy calculations of protein mutations in Q. J Chem Theory Comput 15:5461–5473

    Article  CAS  PubMed  Google Scholar 

  16. Marelius J, Kolmodin K, Feierberg I et al (1998) Q: a molecular dynamics program for free energy calculations and empirical valence bond simulations in biomolecular systems. J Mol Graph Model 16:213–225

    Article  CAS  PubMed  Google Scholar 

  17. Bauer P, Barrozo A, Purg M et al (2018) Q6: A comprehensive toolkit for empirical valence bond and related free energy calculations. 7:388–395

    Google Scholar 

  18. Frenkel D, Smit B (2002) Free Energy Calculations. In: Understanding Molecular Simulation. Academic Press, pp 167–200

    Google Scholar 

  19. Polishchuk PG, Madzhidov TI, Varnek A (2013) Estimation of the size of drug-like chemical space based on GDB-17 data. J Comput Aided Mol Des 27:675–679

    Article  CAS  PubMed  Google Scholar 

  20. Reymond JL (2015) The chemical space project. Acc Chem Res 48:722–730

    Article  CAS  PubMed  Google Scholar 

  21. Michel J, Essex JW (2010) Prediction of protein-ligand binding affinity by free energy simulations: assumptions, pitfalls and expectations. J Comput Aided Mol Des 24:639–658

    Article  CAS  PubMed  Google Scholar 

  22. Gapsys V, Michielssens S, Seeliger D et al (2015) Pmx: automated protein structure and topology generation for alchemical perturbations. J Comput Chem 36:348–354

    Article  CAS  PubMed  Google Scholar 

  23. Lind C, Esguerra M, Jespers W et al (2019) Free energy calculations of RNA interactions. 162–163:85–95

    Google Scholar 

  24. Liu S, Wang L, Mobley DL (2015) Is ring breaking feasible in relative binding free energy calculations? J Chem Inf Model 55:727–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhukov A, Andrews SP, Errey JC et al (2011) Biophysical mapping of the adenosine a 2A receptor. J Med Chem 54:4312–4323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Steinbrecher T, Zhu C, Wang L et al (2017) Predicting the effect of amino acid single-point mutations on protein stability—large-scale validation of MD-based relative free energy calculations. J Mol Biol 429:948–963

    Article  CAS  PubMed  Google Scholar 

  27. Boukharta L, Gutiérrez-de-Terán H, Åqvist J (2014) Computational prediction of alanine scanning and ligand binding energetics in G-protein coupled receptors. PLoS Comput Biol 10:e1003585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Keränen H, Åqvist J, Gutiérrez-de-Terán H (2015) Free energy calculations of A 2A adenosine receptor mutation effects on agonist binding. 51:3522–3525

    Google Scholar 

  29. Keränen H, Gutiérrez-de-Terán H, Åqvist J (2014) Structural and energetic effects of A2A adenosine receptor mutations on agonist and antagonist binding. PLoS One 9:e108492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Nøhr AC, Jespers W, Shehata MA et al (2017) The GPR139 reference agonists 1a and 7c, and tryptophan and phenylalanine share a common binding site. Sci Rep 7:1–9

    Article  CAS  Google Scholar 

  31. Jespers W, Oliveira A, Prieto-Díaz R et al (2017) Structure-Based Design of Potent and Selective Ligands at the Four Adenosine Receptors. 22:1–17

    Google Scholar 

  32. Vasile S, Esguerra M, Jespers W et al (2018) Characterization of ligand binding to GPCRs through computational methods. In: Methods in molecular biology. Humana Press, New York, NY, pp 23–44

    Google Scholar 

  33. Xu B, Vasile S, Østergaard S et al (2018) Elucidation of the binding mode of the Carboxyterminal region of peptide YY to the human Y2 receptor. Mol Pharmacol 93:323–334

    Article  CAS  PubMed  Google Scholar 

  34. Jespers W, Verdon G, Azuaje J et al (2019) X-ray crystallography and free energy calculations reveal the binding mechanism of a 2A adenosine receptor antagonists. ChemRxiv:1–11

    Google Scholar 

  35. Lee FS, Warshel A (1992) A local reaction field method for fast evaluation of long-range electrostatic interactions in molecular simulations. J Chem Phys 97:3100–3107

    Article  CAS  Google Scholar 

  36. Isaksen GV, Åqvist J, Brandsdal BO (2016) Enzyme surface rigidity tunes the temperature dependence of catalytic rates. Proc Natl Acad Sci 113:7822–7827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bjelic S, Brandsdal BO, Åqvist J (2008) Cold adaptation of enzyme reaction rates. Biochemistry 47:10049–10057

    Article  CAS  PubMed  Google Scholar 

  38. Zwanzig RW (1954) High-temperature equation of state by a perturbation method. I. Nonpolar gases. J Chem Phys 22:1420

    Article  CAS  Google Scholar 

  39. Pohorille A, Jarzynski C, Chipot C (2010) Good practices in free-energy calculations. J Phys Chem B 114:10235–10253

    Article  CAS  PubMed  Google Scholar 

  40. Brandsdal BO, Österberg F, Almlöf M et al (2003) Free energy calculations and ligand binding. Adv Protein Chem 66:123–158

    Article  CAS  PubMed  Google Scholar 

  41. Bennett CH (1976) Efficient estimation of free energy differences from Monte Carlo data. J Comput Phys 22:245–268

    Article  Google Scholar 

  42. Tembre BL, Mc Cammon JA (1984) Ligand-receptor interactions. Comput Chem 8:281–283

    Article  Google Scholar 

  43. Jorgensen WL (2004) The many roles of computation in drug discovery. Science (80- ) 303:1813–1818

    Article  CAS  Google Scholar 

  44. Jazayeri A, Andrews SP, Marshall FH (2017) Structurally enabled discovery of adenosine a 2A receptor antagonists. Chem Rev 117:21–37

    Article  CAS  PubMed  Google Scholar 

  45. Gutiérrez-de-Terán H, Sallander J, Sotelo E (2017) Structure-based rational Design of Adenosine Receptor Ligands. Curr Top Med Chem 17:40–58

    Article  PubMed  CAS  Google Scholar 

  46. Minetti P, Tinti MO, Carminati P et al (2005) 2-n-butyl-9-methyl-8-[1,2,3]triazol-2-yl-9H-purin-6-ylamine and analogues as A2A adenosine receptor antagonists. Design, synthesis, and pharmacological characterization. J Med Chem 48:6887–6896

    Article  CAS  PubMed  Google Scholar 

  47. Liu W, Chun E, Thompson AA et al (2012) Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337:232–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Madhavi Sastry G, Adzhigirey M, Day T et al (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27:221–234

    Article  CAS  PubMed  Google Scholar 

  49. Jespers W, Schiedel AC, Heitman LH et al (2018) Structural mapping of adenosine receptor mutations: ligand binding and signaling mechanisms. Trends Pharmacol Sci 39:75–89

    Article  CAS  PubMed  Google Scholar 

  50. Lebon G, Warne T, Edwards PC et al (2011) Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature 474:521–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Verdonk ML, Cole JC, Hartshorn MJ et al (2003) Improved protein-ligand docking using GOLD. 52:609–623

    Google Scholar 

  52. Esguerra M, Siretskiy A, Bello X et al (2016) GPCR-ModSim: a comprehensive web based solution for modeling G-protein coupled receptors. Nucleic Acids Res 44:W455–W462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Åqvist J (1990) Ion-water interaction potentials derived from free energy perturbation simulations. J Phys Chem 94:8021–8024

    Article  Google Scholar 

  54. Vanommeslaeghe K, Hatcher E, Acharya C et al (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31:671–690

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang J, Wang W, Kollman PA et al (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25:247–260

    Article  PubMed  CAS  Google Scholar 

  56. Banks JL, Beard HS, Cao Y et al (2005) Integrated modeling program, applied chemical theory (IMPACT). J Comput Chem 26:1752–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bharate SBSS, Singh B, Kachler S et al (2016) Discovery of 7-(Prolinol- N -yl)-2-phenylamino-thiazolo[5,4- d ]pyrimidines as novel non-nucleoside partial agonists for the a 2A adenosine receptor: prediction from molecular modeling. J Med Chem 59:5922–5928

    Article  CAS  PubMed  Google Scholar 

  58. Gutiérrez-de-Terán H, Keränen H, Azuaje J et al (2015) Computer-aided design of GPCR ligands. Methods Mol Biol 1272:271–291

    Article  PubMed  CAS  Google Scholar 

  59. Vasile S, Esguerra M, Jespers W et al (2018) Characterization of ligand binding to GPCRs through computational methods. Methods Mol Biol:23–44

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Gutiérrez-de-Terán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jespers, W., Åqvist, J., Gutiérrez-de-Terán, H. (2021). Free Energy Calculations for Protein–Ligand Binding Prediction. In: Ballante, F. (eds) Protein-Ligand Interactions and Drug Design. Methods in Molecular Biology, vol 2266. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1209-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1209-5_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1208-8

  • Online ISBN: 978-1-0716-1209-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics