Skip to main content

Unbiased Microbiome and Metabolomic Profiling of Fecal Samples from Patients with Melanoma

  • Protocol
  • First Online:
Melanoma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2265))

Abstract

Gut microbiota influence and modulate host immune responses. In preclinical cancer models, mice lacking gut microbiota have a markedly diminished response to immune checkpoint inhibitor therapy. Further, in melanoma patients, specific commensal gut microbiota have been associated with a positive clinical response to immunotherapy. In order to study the gut microbiome and metabolome, we have developed methods for fecal sample collection and processing, microbiome and metabolome profiling, and bioinformatic analysis. This protocol will be a useful tool for interrogating the taxonomic composition and functional output of a melanoma patient’s gut microbiome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Spor A, Koren O, Ley R (2011) Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 9(4):279–290

    Article  CAS  Google Scholar 

  2. Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336(6086):1268–1273

    Article  CAS  Google Scholar 

  3. Iida N, Dzutsev A, Stewart CA et al (2013) Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342(6161):967–970

    Article  CAS  Google Scholar 

  4. Sivan A, Corrales L, Hubert N et al (2015) Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350(6264):1084–1089

    Article  CAS  Google Scholar 

  5. Vétizou M, Pitt JM, Daillère R et al (2015) Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350(6264):1079–1084

    Article  Google Scholar 

  6. Frankel AE, Coughlin LA, Kim J et al (2017) Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human Gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients. Neoplasia 19(10):848–855

    Article  CAS  Google Scholar 

  7. Chaput N, Lepage P, Coutzac C et al (2017) Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann Oncol 28(6):1368–1379

    Article  CAS  Google Scholar 

  8. Gopalakrishnan V, Spencer CN, Nezi L (2018) Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359(6371):97–103

    Article  CAS  Google Scholar 

  9. Matson V, Fessler J, Bao R (2018) The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359(6371):104–108

    Article  CAS  Google Scholar 

  10. Routy B, Le Chatelier E, Derosa L (2018) Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359(6371):91–97

    Article  CAS  Google Scholar 

  11. Larkin J, Chiarion-Sileni V, Gonzalez R et al (2015) Combined Nivolumab and Ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373(1):23–34

    Article  Google Scholar 

  12. Mathewson ND, Jenq R, Mathew AV et al (2016) Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nat Immunol 17(5):505–513

    Article  CAS  Google Scholar 

  13. Smith PM, Howitt MR, Panikov N et al (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341(6145):569–573

    Article  CAS  Google Scholar 

  14. Carroll IM, Ringel-Kulka T, Siddle JP et al (2012) Characterization of the fecal microbiota using high-throughput sequencing reveals a stable microbial community during storage. PLoS One 7(10):e46953

    Article  CAS  Google Scholar 

  15. Minich JJ, Zhu Q, Janssen S et al (2018) KatharoSeq enables high-throughput microbiome analysis from low-biomass samples. mSystems 3(3):e00218–e00217

    Article  CAS  Google Scholar 

  16. Ye SH, Siddle KJ, Park DJ et al (2019) Benchmarking metagenomics tools for taxonomic classification. Cell 178(4):779–794

    Article  CAS  Google Scholar 

  17. Segata N, Waldron L, Ballarini A et al (2012) Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods 9(8):811–814

    Article  CAS  Google Scholar 

  18. Abubucker S, Segata N, Goll J et al (2012) Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol 8(6):e1002358

    Article  CAS  Google Scholar 

  19. Kim J, Kim MS, Yoh AY et al (2016) FMAP: functional mapping and analysis pipeline for metagenomics and metatranscriptomics studies. BMC Bioinformatics 17(1):420

    Article  Google Scholar 

  20. Simms-Waldrip TR, Sunkersett G, Coughlin LA et al (2017) Antibiotic-induced depletion of anti-inflammatory clostridia is associated with the development of graft-versus-host disease in pediatric stem cell transplantation patients. Biol Blood Marrow Transplant 23(5):820–829

    Article  CAS  Google Scholar 

  21. Segata N, Izard J, Waldron L et al (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12(6):R60

    Article  Google Scholar 

  22. Song SJ, Amir A, Metcalf JL (2016) Preservation methods differ in fecal microbiome stability, affecting suitability for field studies. mSystems 1(3):e00021–e00016

    Article  Google Scholar 

  23. Witchley JN, Penumetcha P, Abon NV et al (2019) Candida albicans morphogenesis programs control the balance between gut commensalism and invasive infection. Cell Host Microbe 25(3):432–443.e6

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Roberta I. and Norman L. Pollock Fund (A.Y.K) and NIH R01 CA231303 (A.Y.K).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Y. Koh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bui, A., Choi, Y., Frankel, A.E., Koh, A.Y. (2021). Unbiased Microbiome and Metabolomic Profiling of Fecal Samples from Patients with Melanoma. In: Hargadon, K.M. (eds) Melanoma. Methods in Molecular Biology, vol 2265. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1205-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1205-7_33

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1204-0

  • Online ISBN: 978-1-0716-1205-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics