Skip to main content

Preparation, Drug Treatment, and Immunohistological Analysis of Tri-Culture Spheroid 3D Melanoma-Like Models

  • Protocol
  • First Online:
Melanoma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2265))

Abstract

Most currently available three-dimensional melanoma models have either focused on simplicity or were optimized for physiological relevance. Accordingly, these paradigms have been either composed of malignant cells only or they were sophisticated human skin equivalents featuring multiple cell types and skin-like organization. Here, an intermediate spheroid-based assay system is presented, which uses tri-cultures of human CCD-1137Sk fibroblasts, HaCaT keratinocytes, and SK-MEL-28 melanoma cells. Being made of cell lines, these spheroids can be reliably reproduced without any special equipment using standard culture procedures, and they feature different aspects of skin and early stage melanoma. Therefore, this kind of model can be useful for lead-compound testing or addressing fundamental principles of early melanoma formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Laikova KV, Oberemok VV, Krasnodubets AM, Gal’chinsky NV, Useinov RZ, Novikov IA, Temirova ZZ, Gorlov MV, Shved NA, Kumeiko VV, Makalish TP, Bessalova EY, Fomochkina II, Esin AS, Volkov ME, Kubyshkin AV (2019) Advances in the understanding of skin cancer: ultraviolet radiation, mutations, and antisense oligonucleotides as anticancer drugs. Molecules 24:1516

    Article  CAS  Google Scholar 

  2. Diepgen TL, Mahler V (2002) The epidemiology of skin cancer. Br J Dermatol 146:1–6

    Article  Google Scholar 

  3. Herraiz C, Jiménez-Cervantes C, Sánchez-Laorden B, García-Borrón JC (2018) Functional interplay between secreted ligands and receptors in melanoma. Semin Cell Dev Biol 78:73–84

    Article  CAS  Google Scholar 

  4. Erdei E, Torres SM (2010) A new understanding in the epidemiology of melanoma. Expert Rev Anticancer Ther 10:1811–1823

    Article  Google Scholar 

  5. Coricovac D, Dehelean C, Moaca E-A, Pinzaru I, Bratu T, Navolan D, Boruga O (2018) Cutaneous melanoma—a long road from experimental models to clinical outcome: a review. Int J Mol Sci 19:1566

    Article  Google Scholar 

  6. Carr S, Smith C, Wernberg J (2020) Epidemiology and risk factors of melanoma. Surg Clin North Am 100:1–12

    Article  Google Scholar 

  7. Ciarletta P, Foret L, Ben Amar M (2011) The radial growth phase of malignant melanoma: multi-phase modelling, numerical simulations and linear stability analysis. J R Soc Interface 8:345–368

    Article  CAS  Google Scholar 

  8. Haridas P, McGovern JA, McElwain SD, Simpson MJ (2017) Quantitative comparison of the spreading and invasion of radial growth phase and metastatic melanoma cells in a three-dimensional human skin equivalent model. PeerJ 5:e3754

    Article  Google Scholar 

  9. Qendro V, Lundgren DH, Rezaul K, Mahony F, Ferrell N, Bi A, Latifi A, Chowdhury D, Gygi S, Haas W, Wilson L, Murphy M, Han DK (2014) Large-scale proteomic characterization of melanoma expressed proteins reveals nestin and vimentin as biomarkers that can potentially distinguish melanoma subtypes. J Proteome Res 13:5031–5040

    Article  CAS  Google Scholar 

  10. Balch CM, Buzaid AC, Soong S-J, Atkins MB, Cascinelli N, Coit DG, Fleming ID, Gershenwald JE, Houghton A Jr, Kirkwood JM, McMasters M, Mihm MF, Morton DL, Reintgen DS, Ross MI, Sober A, Thompson A, Thompson JF (2001) Final version of the American Joint Committee on Cancer staging system for cutaneous melanoma. J Clin Oncol 19:3635–3648

    Article  CAS  Google Scholar 

  11. Shtivelman E, Davies MA, Hwu P, Yang J, Lotem M, Oren M, Flaherty KT, Fisher DE (2014) Pathways and therapeutic targets in melanoma. Oncotarget 5:1701

    Article  Google Scholar 

  12. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, Dummer R, Garbe C, Testori A, Maio M, Hogg D, Lorigan P, Lebbe C, Jouary T, Schadendorf D, Ribas A, O’Day SJ, Sosman JA, Kirkwood JM, AMM E, Dreno B, Nolop K, Li J, Nelson B, Hou JH, Lee RJ, Flaherty KT, GA MA, BRIM-3 Study Group (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364:2507–2516

    Article  CAS  Google Scholar 

  13. Flaherty KT (2010) Narrative review: BRAF opens the door for therapeutic advances in melanoma. Ann Intern Med 153:587–591

    Article  Google Scholar 

  14. Wolchok JD, Hodi FS, Weber JS, Allison JP, Urba WJ, Robert C, O’Day SJ, Hoos A, Humphrey R, Berman DM, Lonberg N, Korman AJ (2013) Development of ipilimumab: a novel immunotherapeutic approach for the treatment of advanced melanoma. Ann N Y Acad Sci 1291:1–13

    Article  CAS  Google Scholar 

  15. Bourland J, Fradette J, Auger FA (2018) Tissue-engineered 3D melanoma model with blood and lymphatic capillaries for drug development. Sci Rep 8:1–13

    Article  CAS  Google Scholar 

  16. Kapałczyńska M, Kolenda T, Przybyła W, Zajączkowska M, Teresiak A, Filas V, Ibbs M, Bliźniak R, Łuczewski Ł, Lamperska K (2018) 2D and 3D cell cultures–a comparison of different types of cancer cell cultures. Arch Med Sci 14:910–919

    PubMed  Google Scholar 

  17. Ghosh S, Spagnoli GC, Martin I, Ploegert S, Demougin P, Heberer M, Reschner A (2005) Three-dimensional culture of melanoma cells profoundly affects gene expression profile: a high density oligonucleotide array study. J Cell Physiol 204:522–531

    Article  CAS  Google Scholar 

  18. Marconi A, Quadri M, Saltari A, Pincelli C (2018) Progress in melanoma modelling in vitro. Exp Dermatol 27:578–586

    Article  Google Scholar 

  19. Rodenhizer D, Dean T, D’Arcangelo E, McGuigan AP (2018) The current landscape of 3D in vitro tumor models: what cancer hallmarks are accessible for drug discovery? Adv Healthc Mater 7:e1701174

    Article  Google Scholar 

  20. Klicks J, Masslo C, Kluth A, Rudolf R, Hafner M (2019) A novel spheroid-based co-culture model mimics loss of keratinocyte differentiation, melanoma cell invasion, and drug-induced selection of ABCB5-expressing cells. BMC Cancer 19:402

    Article  Google Scholar 

  21. Tsubokawa F, Nishisaka T, Takeshima Y, KJPi I (2002) Heterogeneity of expression of cytokeratin subtypes in squamous cell carcinoma of the lung: with special reference to CK14 overexpression in cancer of high-proliferative and lymphogenous metastatic potential. Pathol Int 52:286–293

    Article  CAS  Google Scholar 

  22. Mackenzie I, Rittman G, Gao Z, Leigh I, Lane EB (1991) Patterns of cytokeratin expression in human gingival epithelia. J Periodontal Res 26:468–478

    Article  CAS  Google Scholar 

  23. Nürnberg E, Vitacolonna M, Klicks J, von Molitor E, Cesetti T, Keller F, Bruch R, Ertongur-Fauth T, Riedel K, Scholz P, Lau T, Schneider R, Meier J, Hafner M, Rudolf R (2020) Routine optical clearing of 3D-cell cultures: simplicity forward. Front Mol Biosci 7:20

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the German Federal Ministry of Education and Research (BMBF) as part of the Innovation Partnership M2Aind, project M2OGA (03FH8I02IA) within the framework Starke Fachhochschulen–Impuls für die Region (FH-Impuls). This research project is a part of the Forschungscampus M2OLIE and funded by the German Federal Ministry of Education and Research (BMBF) within the Framework Forschungscampus: public–private partnership for innovations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rüdiger Rudolf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schäfer, M.E.A., Klicks, J., Hafner, M., Rudolf, R. (2021). Preparation, Drug Treatment, and Immunohistological Analysis of Tri-Culture Spheroid 3D Melanoma-Like Models. In: Hargadon, K.M. (eds) Melanoma. Methods in Molecular Biology, vol 2265. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1205-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1205-7_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1204-0

  • Online ISBN: 978-1-0716-1205-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics