Skip to main content

System-Wide Profiling of Protein Complexes Via Size Exclusion Chromatography–Mass Spectrometry (SEC–MS)

  • Protocol
  • First Online:
Shotgun Proteomics

Abstract

In living cells, most proteins are organized in stable or transient functional assemblies, protein complexes, which control a multitude of vital cellular processes such as cell cycle progression, metabolism, and signal transduction. Over several decades, specific protein complexes have been analyzed by structural biology methods, initially X-ray crystallography and more recently single particle cryoEM. In parallel, mass spectrometry (MS)-based methods including in vitro affinity-purification coupled to MS or in vivo protein proximity-dependent labeling methods have proven particularly effective to detect complexes, thus nominating new assemblies for structural analysis. Those approaches, however, are either of limited in throughput or require specifically engineered protein systems.

In this chapter, we present protocols for a workflow that supports the parallel analysis of multiple complexes from the same biological sample with respect to abundance, subunit composition, and stoichiometry. It consists of the separation of native complexes by size-exclusion chromatography (SEC) and the subsequent mass spectrometric analysis of the proteins in consecutive SEC fractions. In particular, we describe (1) optimized conditions to achieve native protein complex separation by SEC, (2) the preparation of the SEC fractions for MS analysis, (3) the acquisition of the MS data at high throughput via SWATH/DIA (data-independent analysis) mass spectrometry and short chromatographic gradients, and (4) a set of bioinformatic tools for the targeted analysis of protein complexes. Altogether, the parallel measurement of a high number of complexes from a single biological sample results in unprecedented system-level insights into the remodeling of cellular protein complexes in response to perturbations of a broad range of cellular systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ganem B, Li YT, Henion JD (1991) Observation of noncovalent enzyme substrate and enzyme product complexes by ion-spray mass-spectrometry. J Am Chem Soc 113(20):7818–7819

    Article  CAS  Google Scholar 

  2. Savitski MM et al (2014) Tracking cancer drugs in living cells by thermal profiling of the proteome. Science 346(6205):1255784

    Article  Google Scholar 

  3. Rappsilber J et al (2000) A generic strategy to analyze the spatial organization of multi-protein complexes by cross-linking and mass spectrometry. Anal Chem 72(2):267–275

    Article  CAS  Google Scholar 

  4. Zhang Z, Smith DL (1993) Determination of amide hydrogen exchange by mass spectrometry: a new tool for protein structure elucidation. Protein Sci 2(4):522–531

    Article  CAS  Google Scholar 

  5. Feng Y et al (2014) Global analysis of protein structural changes in complex proteomes. Nat Biotechnol 32(10):1036–1044

    Article  CAS  Google Scholar 

  6. Leitner A (2016) Cross-linking and other structural proteomics techniques: how chemistry is enabling mass spectrometry applications in structural biology. Chem Sci 7(8):4792–4803

    Article  CAS  Google Scholar 

  7. Gavin AC et al (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440(7084):631–636

    Article  CAS  Google Scholar 

  8. Roux KJ et al (2012) A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J Cell Biol 196(6):801–810

    Article  CAS  Google Scholar 

  9. Porath J, Flodin P (1959) Gel filtration—method for desalting and group separation. Nature 183(4676):1657–1659

    Article  CAS  Google Scholar 

  10. Ramani AK et al (2008) A map of human protein interactions derived from co-expression of human mRNAs and their orthologs. Mol Syst Biol 4:180

    Article  Google Scholar 

  11. Wessels HJCT et al (2009) LC-MS/MS as an alternative for SDS-PAGE in blue native analysis of protein complexes. Proteomics 9(17):4221–4228

    Article  CAS  Google Scholar 

  12. Andersen JS et al (2003) Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426(6966):570–574

    Article  CAS  Google Scholar 

  13. Glatter T et al (2009) An integrated workflow for charting the human interaction proteome: insights into the PP2A system. Mol Syst Biol 5:237

    Article  Google Scholar 

  14. Hauri S et al (2016) A high-density map for navigating the human Polycomb Complexome. Cell Rep 17(2):583–595

    Article  CAS  Google Scholar 

  15. Hauri S et al (2013) Interaction proteome of human hippo signaling: modular control of the co-activator YAP1. Mol Syst Biol 9:713

    Article  Google Scholar 

  16. Huttlin EL et al (2015) The BioPlex network: a systematic exploration of the human Interactome. Cell 162(2):425–440

    Article  CAS  Google Scholar 

  17. Choi H et al (2011) SAINT: probabilistic scoring of affinity purification-mass spectrometry data. Nat Methods 8(1):70–73

    Article  CAS  Google Scholar 

  18. Scott NE et al (2017) Interactome disassembly during apoptosis occurs independent of caspase cleavage. Mol Syst Biol 13(1):906

    Article  Google Scholar 

  19. Havugimana PC et al (2012) A census of human soluble protein complexes. Cell 150(5):1068–1081

    Article  CAS  Google Scholar 

  20. Heusel M et al (2019) Complex-centric proteome profiling by SEC-SWATH-MS. Mol Syst Biol 15(1):e8438

    Article  Google Scholar 

  21. Heusel M et al (2020) A global screen for assembly state changes of the mitotic proteome by SEC-SWATH-MS. Cell Syst 10(2):133–155.e6

    Article  CAS  Google Scholar 

  22. Bache N et al (2018) A novel LC system embeds Analytes in pre-formed gradients for rapid, ultra-robust proteomics. Mol Cell Proteomics 17(11):2284–2296

    Article  CAS  Google Scholar 

  23. Gillet LC et al (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11(6):p. O111 016717

    Article  Google Scholar 

  24. Collins BC et al (2017) Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry. Nat Commun 8:291

    Article  Google Scholar 

  25. Perez-Riverol Y et al (2019) The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res 47(D1):D442–D450

    Article  CAS  Google Scholar 

  26. Escher C et al (2012) Using iRT, a normalized retention time for more targeted measurement of peptides. Proteomics 12(8):1111–1121

    Article  CAS  Google Scholar 

  27. Li X et al (2015) Proteomic analyses reveal distinct chromatin-associated and soluble transcription factor complexes. Mol Syst Biol 11(1):775

    Article  Google Scholar 

  28. Rost HL et al (2014) OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat Biotechnol 32(3):219–223

    Article  Google Scholar 

  29. Rost HL et al (2016) TRIC: an automated alignment strategy for reproducible protein quantification in targeted proteomics. Nat Methods 13(9):777–783

    Article  CAS  Google Scholar 

  30. Rost HL, Aebersold R, Schubert OT (2017) Automated SWATH data analysis using targeted extraction of ion chromatograms. Methods Mol Biol 1550:289–307

    Article  CAS  Google Scholar 

  31. Ludwig C et al (2018) Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Mol Syst Biol 14(8):e8126

    Article  Google Scholar 

  32. Rosenberger G et al (2017) Statistical control of peptide and protein error rates in large-scale targeted data-independent acquisition analyses. Nat Methods 14(9):921

    Article  CAS  Google Scholar 

  33. Mallam AL et al (2019) Systematic discovery of endogenous human ribonucleoprotein complexes. Cell Rep 29(5):1351

    Article  CAS  Google Scholar 

  34. Gilbert M, Schulze WX (2019) Global identification of protein complexes within the membrane proteome of Arabidopsis roots using a SEC-MS approach. J Proteome Res 18(1):107–119

    CAS  PubMed  Google Scholar 

  35. Crozier TWM et al (2017) Prediction of protein complexes in Trypanosoma brucei by protein correlation profiling mass spectrometry and machine learning. Mol Cell Proteomics 16(12):2254–2267

    Article  CAS  Google Scholar 

  36. Bruderer R et al (2015) Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol Cell Proteomics 14(5):1400–1410

    Article  CAS  Google Scholar 

  37. Tsou CC et al (2015) DIA-umpire: comprehensive computational framework for data-independent acquisition proteomics. Nat Methods 12(3):258–264, 7 p following 264

    Article  CAS  Google Scholar 

  38. Schubert OT et al (2015) Building high-quality assay libraries for targeted analysis of SWATH MS data. Nat Protoc 10(3):426–441

    Article  CAS  Google Scholar 

  39. Rosenberger G et al (2014) A repository of assays to quantify 10,000 human proteins by SWATH-MS. Sci Data 1:140031

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Contributions: AF, FF, and FU conceived and designed the project. MV and FF prepared and conducted the showcase experiment. AF and FF analyzed the showcase example. AF, FF, FU, and CM wrote the manuscript. BC, LG, MG, and RA supervised, reviewed, and edited the manuscript. MG and RA provided funding and resources to support the project. Fig. 1 was created with BioRender.com.

Declaration of Interests: The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruedi Aebersold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fossati, A. et al. (2021). System-Wide Profiling of Protein Complexes Via Size Exclusion Chromatography–Mass Spectrometry (SEC–MS). In: Carrera, M., Mateos, J. (eds) Shotgun Proteomics. Methods in Molecular Biology, vol 2259. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1178-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1178-4_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1177-7

  • Online ISBN: 978-1-0716-1178-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics