Skip to main content

Reconstitution of Morphogen Signaling Gradients in Cultured Cells

  • Protocol
  • First Online:
Programmed Morphogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2258))

  • 1934 Accesses

Abstract

Development of multicellular organisms depends on the proper establishment of signaling information in space and time. Secreted molecules called morphogens form concentration gradients in space and provide positional information to differentiating cells within the organism. Although the key molecular components of morphogen pathways have been identified, how the architectures and key parameters of morphogen pathways control the properties of signaling gradients, such as their size, speed, and robustness to perturbations, remains challenging to study in developing embryos. Reconstituting morphogen gradients in cell culture provides an alternative approach to address this question. Here we describe the methodology for reconstituting Sonic Hedgehog (SHH) signaling gradients in mouse fibroblast cells. The protocol includes the design of morphogen sending and receiving cell lines, the setup of radial and linear gradients, the quantitative time-lapse imaging, and the data analysis. Similar approaches could potentially be applied to other cell–cell communication pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rogers KW, Schier AF (2011) Morphogen gradients: from generation to interpretation. Annu Rev Cell Dev Biol 27:377–407

    Article  CAS  Google Scholar 

  2. Wartlick O, Kicheva A, González-Gaitán M (2009) Morphogen gradient formation. Cold Spring Harb Perspect Biol 1:a001255

    Article  Google Scholar 

  3. Perrimon N, McMahon AP (1999) Negative feedback mechanisms and their roles during pattern formation. Cell 97:13–16

    Article  CAS  Google Scholar 

  4. Freeman M (2000) Feedback control of intercellular signalling in development. Nature 408:313–319

    Article  CAS  Google Scholar 

  5. Li P, Markson JS, Wang S, Chen S, Vachharajani V, Elowitz MB (2018) Morphogen gradient reconstitution reveals Hedgehog pathway design principles. Science 360:543–548

    Article  CAS  Google Scholar 

  6. Patten I, Placzek M (2000) The role of sonic hedgehog in neural tube patterning. Cell Mol Life Sci 57:1695–1708

    Article  CAS  Google Scholar 

  7. Nüsslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801

    Article  Google Scholar 

  8. Nakano Y, Guerrero I, Hidalgo A, Taylor A, Whittle JR, Ingham PW (1989) A protein with several possible membrane-spanning domains encoded by the Drosophila segment polarity gene patched. Nature 341:508–513

    Article  CAS  Google Scholar 

  9. Hooper JE, Scott MP (1989) The Drosophila patched gene encodes a putative membrane protein required for segmental patterning. Cell 59:751–765

    Article  CAS  Google Scholar 

  10. Hui C-C, Angers S (2011) Gli proteins in development and disease. Annu Rev Cell Dev Biol 27:513–537

    Article  CAS  Google Scholar 

  11. Chamberlain CE, Jeong J, Guo C, Allen BL, McMahon AP (2008) Notochord-derived Shh concentrates in close association with the apically positioned basal body in neural target cells and forms a dynamic gradient during neural patterning. Development 135:1097–1106

    Article  CAS  Google Scholar 

  12. Dessaud E, Yang LL, Hill K, Cox B, Ulloa F, Ribeiro A, Mynett A, Novitch BG, Briscoe J (2007) Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism. Nature 450:717–720

    Article  CAS  Google Scholar 

  13. Averbukh I, Ben-Zvi D, Mishra S, Barkai N (2014) Scaling morphogen gradients during tissue growth by a cell division rule. Development 141:2150–2156

    Article  CAS  Google Scholar 

  14. Spassky N, Han Y-G, Aguilar A, Strehl L, Besse L, Laclef C, Ros MR, Garcia-Verdugo JM, Alvarez-Buylla A (2008) Primary cilia are required for cerebellar development and Shh-dependent expansion of progenitor pool. Dev Biol 317:246–259

    Article  CAS  Google Scholar 

  15. Goodrich LV, Johnson RL, Milenkovic L, McMahon JA, Scott MP (1996) Conservation of the hedgehog/patched signaling pathway from flies to mice: induction of a mouse patched gene by Hedgehog. Genes Dev 10:301–312

    Article  CAS  Google Scholar 

  16. Rohatgi R, Milenkovic L, Scott MP (2007) Patched1 regulates hedgehog signaling at the primary cilium. Science 317:372–376

    Article  CAS  Google Scholar 

  17. Goedhart J, von Stetten D, Noirclerc-Savoye M, Lelimousin M, Joosen L, Hink MA, van Weeren L, Gadella TWJ Jr, Royant A (2012) Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. Nat Commun 3:751

    Article  Google Scholar 

  18. Gerety SS, Breau MA, Sasai N, Xu Q, Briscoe J, Wilkinson DG (2013) An inducible transgene expression system for zebrafish and chick. Development 140:2235–2243

    Article  CAS  Google Scholar 

  19. Szymczak AL, Workman CJ, Wang Y, Vignali KM, Dilioglou S, Vanin EF, Vignali DAA (2004) Correction of multi-gene deficiency in vivo using a single’self-cleaving'2A peptide—based retroviral vector. Nat Biotechnol 22:589–594

    Article  CAS  Google Scholar 

  20. Balaskas N, Ribeiro A, Panovska J, Dessaud E, Sasai N, Page KM, Briscoe J, Ribes V (2012) Gene regulatory logic for reading the Sonic Hedgehog signaling gradient in the vertebrate neural tube. Cell 148:273–284

    Article  CAS  Google Scholar 

  21. Li C, Hirsch M, Carter P, Asokan A, Zhou X, Wu Z, Samulski RJ (2009) A small regulatory element from chromosome 19 enhances liver-specific gene expression. Gene Ther 16:43–51

    Article  Google Scholar 

  22. Griesbeck O, Baird GS, Campbell RE, Zacharias DA, Tsien RY (2001) Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem 276:29188–29194

    Article  CAS  Google Scholar 

  23. Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T (2005) Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122:473–483

    Article  CAS  Google Scholar 

  24. Bintu L, Yong J, Antebi YE, McCue K, Kazuki Y, Uno N, Oshimura M, Elowitz MB (2016) Dynamics of epigenetic regulation at the single-cell level. Science 351:720–724

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Michael Elowitz lab where the method was initially developed. We also thank Yaron Antebi for providing the single-cell segmentation/tracking program. This work was funded by NIH Pathway to Independence Career Award 1R00HD087532 and Mathers Foundation MF-1905-00336.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pulin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kim, J.S., Pineda, M., Li, P. (2021). Reconstitution of Morphogen Signaling Gradients in Cultured Cells. In: Ebrahimkhani, M.R., Hislop, J. (eds) Programmed Morphogenesis. Methods in Molecular Biology, vol 2258. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1174-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1174-6_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1173-9

  • Online ISBN: 978-1-0716-1174-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics