Skip to main content

A Quantitative Lineage-Tracing Approach to Understand Morphogenesis in Gut

  • Protocol
  • First Online:
Programmed Morphogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2258))

Abstract

Lineage-tracing experiments aim to identify and track the progeny and/or fate of cells. The use of inducible recombinases and fluorescent reporters has been instrumental in defining cellular hierarchies and allowing for the identification of stem cells in an unperturbed in vivo setting. The refinement of these approaches, labeling single cells, and the subsequent quantitative analysis of the clonal dynamics have allowed the comparison of different stem cell populations as well as establishing different mechanisms of cellular replenishment during steady-state homeostasis as well as during morphogenesis and disease. Utilizing this approach, it is now possible to establish the cellular hierarchy in a given tissue and the frequency of cell fate decisions on a population basis, thus providing a comprehensive analysis of cellular behavior in vivo. Although in this chapter we describe a protocol for lineage tracing of cells from fetal intestinal epithelium to the adult intestine, this approach can be widely applied to quantitatively assess the cell fate of any fetal cell during morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kretzschmar K, Watt FM (2012) Lineage tracing. Cell 148(1–2):33–45. https://doi.org/10.1016/j.cell.2012.01.002

    Article  CAS  PubMed  Google Scholar 

  2. Cheng H, Leblond CP (1974) Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. I. Columnar cell. Am J Anat 141(4):461–479. https://doi.org/10.1002/aja.1001410403

    Article  CAS  PubMed  Google Scholar 

  3. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449(7165):1003–1007. https://doi.org/10.1038/nature06196

    Article  CAS  PubMed  Google Scholar 

  4. Lopez-Garcia C, Klein AM, Simons BD, Winton DJ (2010) Intestinal stem cell replacement follows a pattern of neutral drift. Science 330(6005):822–825. https://doi.org/10.1126/science.1196236

    Article  CAS  PubMed  Google Scholar 

  5. Ritsma L, Ellenbroek SIJ, Zomer A, Snippert HJ, de Sauvage FJ, Simons BD, Clevers H, van Rheenen J (2014) Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging. Nature 507(7492):362–365. https://doi.org/10.1038/nature12972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Snippert HJ, van der Flier LG, Sato T, van Es JH, van den Born M, Kroon-Veenboer C, Barker N, Klein AM, van Rheenen J, Simons BD, Clevers H (2010) Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143(1):134–144. https://doi.org/10.1016/j.cell.2010.09.016

    Article  CAS  PubMed  Google Scholar 

  7. Guiu J, Hannezo E, Yui S, Demharter S, Ulyanchenko S, Maimets M, Jorgensen A, Perlman S, Lundvall L, Mamsen LS, Larsen A, Olesen RH, Andersen CY, Thuesen LL, Hare KJ, Pers TH, Khodosevich K, Simons BD, Jensen KB (2019) Tracing the origin of adult intestinal stem cells. Nature 570(7759):107–111. https://doi.org/10.1038/s41586-019-1212-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Andersen MS, Hannezo E, Ulyanchenko S, Estrach S, Antoku Y, Pisano S, Boonekamp KE, Sendrup S, Maimets M, Pedersen MT, Johansen JV, Clement DL, Feral CC, Simons BD, Jensen KB (2019) Tracing the cellular dynamics of sebaceous gland development in normal and perturbed states. Nat Cell Biol 21(8):924–932. https://doi.org/10.1038/s41556-019-0362-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Clayton E, Doupe DP, Klein AM, Winton DJ, Simons BD, Jones PH (2007) A single type of progenitor cell maintains normal epidermis. Nature 446(7132):185–189. https://doi.org/10.1038/nature05574

    Article  CAS  PubMed  Google Scholar 

  10. Latil M, Nassar D, Beck B, Boumahdi S, Wang L, Brisebarre A, Dubois C, Nkusi E, Lenglez S, Checinska A, Vercauteren Drubbel A, Devos M, Declercq W, Yi R, Blanpain C (2017) Cell-type-specific chromatin states differentially prime squamous cell carcinoma tumor-initiating cells for epithelial to mesenchymal transition. Cell Stem Cell 20(2):191–204. e195. https://doi.org/10.1016/j.stem.2016.10.018

    Article  CAS  PubMed  Google Scholar 

  11. Han S, Fink J, Jorg DJ, Lee E, Yum MK, Chatzeli L, Merker SR, Josserand M, Trendafilova T, Andersson-Rolf A, Dabrowska C, Kim H, Naumann R, Lee JH, Sasaki N, Mort RL, Basak O, Clevers H, Stange DE, Philpott A, Kim JK, Simons BD, Koo BK (2019) Defining the identity and dynamics of adult gastric isthmus stem cells. Cell Stem Cell 25(3):342–356. e347. https://doi.org/10.1016/j.stem.2019.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lilja AM, Rodilla V, Huyghe M, Hannezo E, Landragin C, Renaud O, Leroy O, Rulands S, Simons BD, Fre S (2018) Clonal analysis of Notch1-expressing cells reveals the existence of unipotent stem cells that retain long-term plasticity in the embryonic mammary gland. Nat Cell Biol 20(6):677–687. https://doi.org/10.1038/s41556-018-0108-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tetteh PW, Basak O, Farin HF, Wiebrands K, Kretzschmar K, Begthel H, van den Born M, Korving J, de Sauvage F, van Es JH, van Oudenaarden A, Clevers H (2016) Replacement of lost Lgr5-positive stem cells through plasticity of their enterocyte-lineage daughters. Cell Stem Cell 18(2):203–213. https://doi.org/10.1016/j.stem.2016.01.001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Kim B. Jensen and Jensen lab for his support, advice, and helpful discussion. We acknowledge Biorender.com as Figs. 1, 3, 4, and 6 were created with Biorender.com and exported under a paid subscription. This work was supported by MSCA-IF-2014-EF-656099. We thank CERCA Programme / Generalitat de Catalunya for institutional support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordi Guiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ulyanchenko, S., Guiu, J. (2021). A Quantitative Lineage-Tracing Approach to Understand Morphogenesis in Gut. In: Ebrahimkhani, M.R., Hislop, J. (eds) Programmed Morphogenesis. Methods in Molecular Biology, vol 2258. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1174-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1174-6_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1173-9

  • Online ISBN: 978-1-0716-1174-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics