Skip to main content

Computational Detection of Pre-microRNAs

  • Protocol
  • First Online:
miRNomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2257))

Abstract

MicroRNA (miRNA) studies have been one of the most popular research areas in recent years. Although thousands of miRNAs have been detected in several species, the majority remains unidentified. Thus, finding novel miRNAs is a vital element for investigating miRNA mediated posttranscriptional gene regulation machineries. Furthermore, experimental methods have challenging inadequacies in their capability to detect rare miRNAs, and are also limited to the state of the organism under examination (e.g., tissue type, developmental stage, stress-disease conditions). These issues have initiated the creation of high-level computational methodologies endeavoring to distinguish potential miRNAs in silico. On the other hand, most of these tools suffer from high numbers of false positives and/or false negatives and as a result they do not provide enough confidence for validating all their predictions experimentally. In this chapter, computational difficulties in detection of pre-miRNAs are discussed and a machine learning based approach that has been designed to address these issues is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Piast M, Kustrzeba-Wójcicka I, Matusiewicz M et al (2005) Molecular evolution of enolase. Acta Biochim Pol 52:507–513

    Article  CAS  PubMed  Google Scholar 

  2. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114

    Article  CAS  PubMed  Google Scholar 

  3. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  4. Bushati N, Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23:175–205

    Article  CAS  PubMed  Google Scholar 

  5. Hébert SS, Horré K, Nicolaï L et al (2009) MicroRNA regulation of Alzheimer’s amyloid precursor protein expression. Neurobiol Dis 33:422–428

    Article  PubMed  CAS  Google Scholar 

  6. Wang G, van der Walt JM, Mayhew G et al (2008) Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of??-Synuclein. Am J Hum Genet 82:283–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Saçar Demirci MD, Yousef M, Allmer J (2019) Computational prediction of functional microRNA–mRNA interactions. Methods Mol Biol 1912:175–196

    Article  PubMed  CAS  Google Scholar 

  8. Velandia-Huerto CA, Yazbeck AM, Schor J, Stadle PF (2021) Evolution and phylogeny of microRNAs—protocols, pitfalls, and problems. In: Allmer J, Yousef M (eds) miRNomics: microRNA biology and computational analysis. Methods in molecular biology, vol 2257. Springer, New York

    Google Scholar 

  9. Saçar MD, Allmer J (2014) Machine learning methods for microRNA gene prediction. Methods Mol Biol 1107:177–187

    Article  PubMed  CAS  Google Scholar 

  10. Larranaga P (2006) Machine learning in bioinformatics. Brief Bioinform 7:86–112

    Article  CAS  PubMed  Google Scholar 

  11. Heikkinen L, Kolehmainen M, Wong G (2011) Prediction of microRNA targets in Caenorhabditis elegans using a self-organizing map. Bioinformatics 27:1247–1254

    Article  CAS  PubMed  Google Scholar 

  12. Zhang B-T, Nam J-W (2008) Supervised learning methods for MicroRNA studies. In: Machine learning in bioinformatics. Wiley, pp 339–365

    Google Scholar 

  13. Saçar Demirci MD, Baumbach J, Allmer J (2017) On the performance of pre-microRNA detection algorithms. Nat Commun 8:330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Saçar Demirci MD, Allmer J (2017) Delineating the impact of machine learning elements in pre-microRNA detection. PeerJ 5:e3131

    Article  PubMed  PubMed Central  Google Scholar 

  15. Huang Z, Shi J, Gao Y et al (2019) HMDD v3.0: a database for experimentally supported human microRNA–disease associations. Nucleic Acids Res 47:D1013–D1017

    Article  CAS  PubMed  Google Scholar 

  16. Chou C-H, Shrestha S, Yang C-D et al (2018) miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res 46:D296–D302

    Article  CAS  PubMed  Google Scholar 

  17. Griffiths-Jones S (2010) miRBase: microRNA sequences and annotation. Curr Protoc Bioinformatics Chapter 12:Unit 12.9.1-10

    PubMed  Google Scholar 

  18. Saçar MD, Hamzeiy H, Allmer J (2013) Can MiRBase provide positive data for machine learning for the detection of MiRNA hairpins? J Integr Bioinform 10

    Google Scholar 

  19. Yousef M, Allmer J, Khalifa W (2015) Sequence motif-based one-class classifiers can achieve comparable accuracy to two-class learners for plant microRNA detection. J Biomed Sci Eng 08:684–694

    Article  CAS  Google Scholar 

  20. Sacar MD, Allmer J (2013) Data mining for microrna gene prediction: on the impact of class imbalance and feature number for microrna gene prediction. In: 2013 8th international symposium on health informatics and bioinformatics. IEEE, pp 1–6

    Google Scholar 

  21. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73

    Article  CAS  PubMed  Google Scholar 

  22. Fromm B, Domanska D, Hackenberg M et al (2018) MirGeneDB2.0: the curated microRNA Gene Database. bioRxiv 258749

    Google Scholar 

  23. Hsu S-D, Chu C-H, Tsou A-P et al (2008) miRNAMap 2.0: genomic maps of microRNAs in metazoan genomes. Nucleic Acids Res 36:D165–D169

    Article  CAS  PubMed  Google Scholar 

  24. Szczesniak MW, Makalowska I (2014) miRNEST 2.0: a database of plant and animal microRNAs. Nucleic Acids Res 42:D74–D77

    Article  CAS  PubMed  Google Scholar 

  25. Gomes CPC, Cho J-H, Hood L et al (2013) A review of computational tools in microRNA discovery. Front Genet 4:81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Lim LP, Lau NC, Weinstein EG et al (2003) The microRNAs of Caenorhabditis elegans. Genes Dev 17:991–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang X, Zhang J, Li F et al (2005) MicroRNA identification based on sequence and structure alignment. Bioinformatics 21:3610–3614

    Article  CAS  PubMed  Google Scholar 

  28. Nam J-W, Kim J, Kim S-K et al (2006) ProMiR II: a web server for the probabilistic prediction of clustered, nonclustered, conserved and nonconserved microRNAs. Nucleic Acids Res 34:W455–W458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xue C, Li F, He T et al (2005) Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC Bioinformatics 6:310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Sewer A, Paul N, Landgraf P et al (2005) Identification of clustered microRNAs using an ab initio prediction method. BMC Bioinformatics 6:267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Hertel J, Stadler PF (2006) Hairpins in a Haystack: recognizing microRNA precursors in comparative genomics data. Bioinformatics 22:e197–e202

    Article  CAS  PubMed  Google Scholar 

  32. Yousef M, Nebozhyn M, Shatkay H et al (2006) Combining multi-species genomic data for microRNA identification using a naive Bayes classifier. Bioinformatics 22:1325–1334

    Article  CAS  PubMed  Google Scholar 

  33. Huang T-H, Fan B, Rothschild MF et al (2007) MiRFinder: an improved approach and software implementation for genome-wide fast microRNA precursor scans. BMC Bioinformatics 8:341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Jiang P, Wu H, Wang W et al (2007) MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Res 35:W339–W344

    Article  PubMed  PubMed Central  Google Scholar 

  35. Terai G, Komori T, Asai K et al (2007) miRRim: A novel system to find conserved miRNAs with high sensitivity and specificity. RNA 13:2081–2090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Friedländer MR, Chen W, Adamidi C et al (2008) Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26:407–415

    Article  PubMed  CAS  Google Scholar 

  37. Hackenberg M, Sturm M, Langenberger D et al (2009) miRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments. Nucleic Acids Res 37:W68–W76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Oulas A, Boutla A, Gkirtzou K et al (2009) Prediction of novel microRNA genes in cancer-associated genomic regions--a combined computational and experimental approach. Nucleic Acids Res 37:3276–3287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kadri S, Hinman V, Benos PV (2009) HHMMiR: efficient de novo prediction of microRNAs using hierarchical hidden Markov models. BMC Bioinformatics 10(Suppl 1):S35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Mathelier A, Carbone A (2010) MIReNA: finding microRNAs with high accuracy and no learning at genome scale and from deep sequencing data. Bioinformatics 26:2226–2234

    Article  CAS  PubMed  Google Scholar 

  41. Wu Y, Wei B, Liu H et al (2011) MiRPara: a SVM-based software tool for prediction of most probable microRNA coding regions in genome scale sequences. BMC Bioinformatics 12:107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tempel S, Tahi F (2012) A fast ab-initio method for predicting miRNA precursors in genomes. Nucleic Acids Res 40:e80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gao D, Middleton R, Rasko JEJ et al (2013) miREval 2.0: a web tool for simple microRNA prediction in genome sequences. Bioinformatics 29:3225–3226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lei J, Sun Y (2014) miR-PREFeR: an accurate, fast and easy-to-use plant miRNA prediction tool using small RNA-Seq data. Bioinformatics 30:2837–2839

    Article  CAS  PubMed  Google Scholar 

  45. Tran VDT, Tempel S, Zerath B et al (2015) miRBoost: boosting support vector machines for microRNA precursor classification. RNA 21:775–785

    Article  CAS  PubMed Central  Google Scholar 

  46. Chen J, Wang X, Liu B (2016) iMiRNA-SSF: improving the identification of microRNA precursors by combining negative sets with different distributions. Sci Rep 6:19062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lu Y, Aras AS, Halushka MK (2018) miRge 2.0: an updated tool to comprehensively analyze microRNA sequencing data

    Google Scholar 

  48. Yu D, Wan Y, Ito H et al (2019) PmiRDiscVali: an integrated pipeline for plant microRNA discovery and validation. BMC Genomics 20:133

    Article  PubMed  PubMed Central  Google Scholar 

  49. Saçar Demirci MD (2019) MicroRNA prediction based on 3D graphical representation of RNA secondary structures. Turk J Biol 43:274–280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Cordero J, Menkovski V, Allmer J (2019) Detection of pre-microRNAs with convolutional neural networks detection of pre-microRNAs with convolutional neural networks. bioRxiv 840579

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Müşerref Duygu Saçar Demirci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Saçar Demirci, M.D. (2022). Computational Detection of Pre-microRNAs. In: Allmer, J., Yousef, M. (eds) miRNomics. Methods in Molecular Biology, vol 2257. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1170-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1170-8_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1169-2

  • Online ISBN: 978-1-0716-1170-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics