Skip to main content

MicroRNAs in Genetic Etiology of Human Diseases

  • Protocol
  • First Online:
miRNomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2257))

Abstract

Since their first discovery more than 20 years ago, miRNAs have been subject to deliberate research and analysis for revealing their physiological or pathological involvement. Regulatory roles of miRNAs in signal transduction, gene expression, and cellular processes in development, differentiation, proliferation, apoptosis, and homeostasis also imply their critical role in disease pathogenesis. Their roles in cancer, neurodegenerative diseases, and other systemic diseases have been studied broadly. In these regulatory pathways, their mutations and target sequence variations play critical roles to determine their functional repertoire. In this chapter, we summarize studies that investigated the role of mutations, polymorphisms, and other variations of miRNAs in respect to pathological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Catalanotto C, Cogoni C, Zardo G (2016) MicroRNA in control of gene expression: an overview of nuclear functions. Int J Mol Sci 17:1712

    Article  PubMed Central  CAS  Google Scholar 

  2. Valinezhad Orang A, Safaralizadeh R, Kazemzadeh-Bavili M (2014) Mechanisms of miRNA-mediated gene regulation from common downregulation to mRNA-specific upregulation. Int J Genomics 2014:970607

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Nazarov PV, Reinsbach SE, Muller A et al (2013) Interplay of microRNAs, transcription factors and target genes: linking dynamic expression changes to function. Nucleic Acids Res 41:2817–2831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hamzeiy H, Suluyayla R, Brinkrolf C et al (2017) Visualization and analysis of MicroRNAs within KEGG pathways using VANESA. J Integr Bioinform 14:20160004

    Article  PubMed Central  Google Scholar 

  5. Othman N, Nagoor NH (2014) The role of microRNAs in the regulation of apoptosis in lung cancer and its application in cancer treatment. Biomed Res Int 2014:318030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Frixa T, Donzelli S, Blandino G (2015) Oncogenic MicroRNAs: key players in malignant transformation. Cancers (Basel) 7:2466–2485

    Article  CAS  Google Scholar 

  7. Galatenko VV, Galatenko AV, Samatov TR et al (2018) Comprehensive network of miRNA-induced intergenic interactions and a biological role of its core in cancer. Sci Rep 8:2418

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Couzigou JM, Lauressergues D, Andre O et al (2017) Positive gene regulation by a natural protective miRNA enables arbuscular mycorrhizal Symbiosis. Cell Host Microbe 21:106–112

    Article  CAS  PubMed  Google Scholar 

  9. Orom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a binds the 5’UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30:460–471

    Article  PubMed  CAS  Google Scholar 

  10. Peter ME (2010) Targeting of mRNAs by multiple miRNAs: the next step. Oncogene 29:2161–2164

    Article  CAS  PubMed  Google Scholar 

  11. Cai Y, Yu X, Hu S et al (2009) A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinformatics 7:147–154

    Article  CAS  PubMed  Google Scholar 

  12. Cheng C, Bhardwaj N, Gerstein M (2009) The relationship between the evolution of microRNA targets and the length of their UTRs. BMC Genomics 10:431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Sandberg R, Neilson JR, Sarma A et al (2008) Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 320:1643–1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Osada H, Takahashi T (2007) MicroRNAs in biological processes and carcinogenesis. Carcinogenesis 28:2–12

    Article  CAS  PubMed  Google Scholar 

  15. Cammaerts S, Strazisar M, De Rijk P et al (2015) Genetic variants in microRNA genes: impact on microRNA expression, function, and disease. Front Genet 6:186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Moszynska A, Gebert M, Collawn JF et al (2017) SNPs in microRNA target sites and their potential role in human disease. Open Biol 7:170019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Lin CH, Li LH, Ho SF et al (2008) A large-scale survey of genetic copy number variations among Han Chinese residing in Taiwan. BMC Genet 9:92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Marcinkowska M, Szymanski M, Krzyzosiak WJ et al (2011) Copy number variation of microRNA genes in the human genome. BMC Genomics 12:183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Duan S, Mi S, Zhang W et al (2009) Comprehensive analysis of the impact of SNPs and CNVs on human microRNAs and their regulatory genes. RNA Biol 6:412–425

    Article  CAS  PubMed  Google Scholar 

  20. Mencia A, Modamio-Hoybjor S, Redshaw N et al (2009) Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss. Nat Genet 41:609–613

    Article  CAS  PubMed  Google Scholar 

  21. Feingold M, Hall BD, Lacassie Y et al (1997) Syndrome of microcephaly, facial and hand abnormalities, tracheoesophageal fistula, duodenal atresia, and developmental delay. Am J Med Genet 69:245–249

    Article  CAS  PubMed  Google Scholar 

  22. de Pontual L, Yao E, Callier P et al (2011) Germline deletion of the miR-17 approximately 92 cluster causes skeletal and growth defects in humans. Nat Genet 43:1026–1030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Palumbo O, Palumbo P, Delvecchio M et al (2015) Microdeletion of 12q24.31: report of a girl with intellectual disability, stereotypies, seizures and facial dysmorphisms. Am J Med Genet A 167A:438–444

    Article  PubMed  CAS  Google Scholar 

  24. Hernandez-Sanchez M, Rodriguez-Vicente AE, Hernandez JA et al (2016) MiRNA expression profile of chronic lymphocytic leukemia patients with 13q deletion. Leuk Res 46:30–36

    Article  CAS  PubMed  Google Scholar 

  25. Pekarsky Y, Croce CM (2015) Role of miR-15/16 in CLL. Cell Death Differ 22:6–11

    Article  CAS  PubMed  Google Scholar 

  26. Porkka KP, Ogg EL, Saramaki OR et al (2011) The miR-15a-miR-16-1 locus is homozygously deleted in a subset of prostate cancers. Genes Chromosomes Cancer 50:499–509

    Article  CAS  PubMed  Google Scholar 

  27. Kwanhian W, Lenze D, Alles J et al (2012) MicroRNA-142 is mutated in about 20% of diffuse large B-cell lymphoma. Cancer Med 1:141–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gaballa MR, Besa EC (2014) Myelodysplastic syndromes with 5q deletion: pathophysiology and role of lenalidomide. Ann Hematol 93:723–733

    Article  CAS  PubMed  Google Scholar 

  29. Czubak K, Lewandowska MA, Klonowska K et al (2015) High copy number variation of cancer-related microRNA genes and frequent amplification of DICER1 and DROSHA in lung cancer. Oncotarget 6:23399–23416

    Article  PubMed  PubMed Central  Google Scholar 

  30. Geraldo MV, Nakaya HI, Kimura ET (2017) Down-regulation of 14q32-encoded miRNAs and tumor suppressor role for miR-654-3p in papillary thyroid cancer. Oncotarget 8:9597–9607

    Article  PubMed  Google Scholar 

  31. Zhou Y, Hao Y, Li Y et al (2017) Amplification and up-regulation of MIR30D was associated with disease progression of cervical squamous cell carcinomas. BMC Cancer 17:230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Masson AL, Talseth-Palmer BA, Evans TJ et al (2016) Copy number variants associated with 18p11.32, DCC and the promoter 1B region of APC in colorectal polyposis patients. Meta gene 7:95–104

    Article  PubMed  Google Scholar 

  33. Yun JH, Moon S, Lee HS et al (2015) MicroRNA-650 in a copy number-variable region regulates the production of interleukin 6 in human osteosarcoma cells. Oncol Lett 10:2603–2609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang L, Du L, Yue Y et al (2017) miRNA copy number variants confer susceptibility to acute anterior uveitis with or without ankylosing spondylitis. Invest Ophthalmol Vis Sci 58:1991–2001

    Article  CAS  PubMed  Google Scholar 

  35. Tao H, Cui L, Li Y et al (2015) Association of tag SNPs and rare CNVs of the MIR155HG/miR-155 gene with epilepsy in the Chinese Han population. Biomed Res Int 2015:837213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. He S, Ou H, Zhao C et al (2018) Clustering pattern and functional effect of SNPs in human miRNA seed regions. Int J Genomics 2018:2456076

    Article  PubMed  PubMed Central  Google Scholar 

  37. Calin GA, Ferracin M, Cimmino A et al (2005) A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353:1793–1801

    Article  CAS  PubMed  Google Scholar 

  38. Harnprasopwat R, Ha D, Toyoshima T et al (2010) Alteration of processing induced by a single nucleotide polymorphism in pri-miR-126. Biochem Biophys Res Commun 399:117–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jazdzewski K, Murray EL, Franssila K et al (2008) Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci U S A 105:7269–7274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ryan BM, Robles AI, Harris CC (2010) Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer 10:389–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shen J, Ambrosone CB, DiCioccio RA et al (2008) A functional polymorphism in the miR-146a gene and age of familial breast/ovarian cancer diagnosis. Carcinogenesis 29:1963–1966

    Article  CAS  PubMed  Google Scholar 

  42. Ye Y, Wang KK, Gu J et al (2008) Genetic variations in microRNA-related genes are novel susceptibility loci for esophageal cancer risk. Cancer Prev Res (Phila) 1:460–469

    Article  CAS  Google Scholar 

  43. Clague J, Lippman SM, Yang H et al (2010) Genetic variation in MicroRNA genes and risk of oral premalignant lesions. Mol Carcinog 49:183–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Guo H, Wang K, Xiong G et al (2010) A functional varient in microRNA-146a is associated with risk of esophageal squamous cell carcinoma in Chinese Han. Familial Cancer 9:599–603

    Article  PubMed  Google Scholar 

  45. Permuth-Wey J, Thompson RC, Burton Nabors L et al (2011) A functional polymorphism in the pre-miR-146a gene is associated with risk and prognosis in adult glioma. J Neuro-Oncol 105:639–646

    Article  CAS  Google Scholar 

  46. Xu B, Feng NH, Li PC et al (2010) A functional polymorphism in pre-miR-146a gene is associated with prostate cancer risk and mature miR-146a expression in vivo. Prostate 70:467–472

    Article  CAS  PubMed  Google Scholar 

  47. Zhan JF, Chen LH, Chen ZX et al (2011) A functional variant in microRNA-196a2 is associated with susceptibility of colorectal cancer in a Chinese population. Arch Med Res 42:144–148

    Article  CAS  PubMed  Google Scholar 

  48. Wilkins OM, Titus AJ, Gui J et al (2017) Genome-scale identification of microRNA-related SNPs associated with risk of head and neck squamous cell carcinoma. Carcinogenesis 38:986–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Carter H, Marty R, Hofree M et al (2017) Interaction landscape of inherited polymorphisms with somatic events in cancer. Cancer Discov 7:410–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zorc M, Skok DJ, Godnic I et al (2012) Catalog of microRNA seed polymorphisms in vertebrates. PLoS One 7:e30737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sacar Demirci MD, Yousef M, Allmer J (2019) Computational prediction of functional MicroRNA-mRNA interactions. Methods Mol Biol 1912:175–196

    Article  CAS  PubMed  Google Scholar 

  52. Yang H, Dinney CP, Ye Y et al (2008) Evaluation of genetic variants in microRNA-related genes and risk of bladder cancer. Cancer Res 68:2530–2537

    Article  CAS  PubMed  Google Scholar 

  53. Chen R, Zheng Y, Zhuo L et al (2017) The association between miR-423 rs6505162 polymorphism and cancer susceptibility: a systematic review and meta-analysis. Oncotarget 8:40204–40213

    Article  PubMed  PubMed Central  Google Scholar 

  54. Chen J, Jiang Y, Zhou J et al (2018) Evaluation of CpG-SNPs in miRNA promoters and risk of breast cancer. Gene 651:1–8

    Article  CAS  PubMed  Google Scholar 

  55. Tian T, Wang M, Zhu W et al (2017) MiR-146a and miR-196a-2 polymorphisms are associated with hepatitis virus-related hepatocellular cancer risk: a meta-analysis. Aging (Albany NY) 9:381–392

    CAS  Google Scholar 

  56. Alagona P Jr, Ahmad TA (2015) Cardiovascular disease risk assessment and prevention: current guidelines and limitations. Med Clin North Am 99:711–731

    Article  PubMed  Google Scholar 

  57. Xiong XD, Cho M, Cai XP et al (2014) A common variant in pre-miR-146 is associated with coronary artery disease risk and its mature miRNA expression. Mutat Res 761:15–20

    Article  CAS  PubMed  Google Scholar 

  58. Kuswanto CN, Sum MY, Qiu A et al (2015) The impact of genome wide supported microRNA-137 (MIR137) risk variants on frontal and striatal white matter integrity, neurocognitive functioning, and negative symptoms in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 168B:317–326

    Article  PubMed  CAS  Google Scholar 

  59. Wright C, Gupta CN, Chen J et al (2016) Polymorphisms in MIR137HG and microRNA-137-regulated genes influence gray matter structure in schizophrenia. Transl Psychiatry 6:e724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Whalley HC, Papmeyer M, Romaniuk L et al (2012) Impact of a microRNA MIR137 susceptibility variant on brain function in people at high genetic risk of schizophrenia or bipolar disorder. Neuropsychopharmacology 37:2720–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pu X, Xiao X (2016) No evidence of an association between MIR137 rs1625579 and schizophrenia in Asians: a meta-analysis in 30 843 individuals. Psychiatr Genet 26:203–210

    Article  CAS  PubMed  Google Scholar 

  62. Abtahi A, Samaei NM, Gholipour N, Moradi N (2018) No association between the SNP rs1625579 in miR-137 gene and schizophrenia in Iranian population. Egyptian J Med Hum Genet 19:247–251

    Article  Google Scholar 

  63. Forstner AJ, Hofmann A, Maaser A et al (2015) Genome-wide analysis implicates microRNAs and their target genes in the development of bipolar disorder. Transl Psychiatry 5:e678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Saus E, Soria V, Escaramis G et al (2010) A haplotype of glycogen synthase kinase 3beta is associated with early onset of unipolar major depression. Genes Brain Behav 9:799–807

    Article  CAS  PubMed  Google Scholar 

  65. Xu Y, Li F, Zhang B et al (2010) MicroRNAs and target site screening reveals a pre-microRNA-30e variant associated with schizophrenia. Schizophr Res 119:219–227

    Article  PubMed  Google Scholar 

  66. Gong J, Tong Y, Zhang HM et al (2012) Genome-wide identification of SNPs in microRNA genes and the SNP effects on microRNA target binding and biogenesis. Hum Mutat 33:254–263

    Article  CAS  PubMed  Google Scholar 

  67. Pelletier C, Speed WC, Paranjape T et al (2011) Rare BRCA1 haplotypes including 3’UTR SNPs associated with breast cancer risk. Cell Cycle 10:90–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Landi D, Gemignani F, Naccarati A et al (2008) Polymorphisms within micro-RNA-binding sites and risk of sporadic colorectal cancer. Carcinogenesis 29:579–584

    Article  CAS  PubMed  Google Scholar 

  69. Naccarati A, Pardini B, Stefano L et al (2012) Polymorphisms in miRNA-binding sites of nucleotide excision repair genes and colorectal cancer risk. Carcinogenesis 33:1346–1351

    Article  CAS  PubMed  Google Scholar 

  70. Wynendaele J, Bohnke A, Leucci E et al (2010) An illegitimate microRNA target site within the 3’ UTR of MDM4 affects ovarian cancer progression and chemosensitivity. Cancer Res 70:9641–9649

    Article  CAS  PubMed  Google Scholar 

  71. Luo J, Cai Q, Wang W et al (2012) A microRNA-7 binding site polymorphism in HOXB5 leads to differential gene expression in bladder cancer. PLoS One 7:e40127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bao BY, Pao JB, Huang CN et al (2011) Polymorphisms inside microRNAs and microRNA target sites predict clinical outcomes in prostate cancer patients receiving androgen-deprivation therapy. Clin Cancer Res 17:928–936

    Article  CAS  PubMed  Google Scholar 

  73. Teo MT, Landi D, Taylor CF et al (2012) The role of microRNA-binding site polymorphisms in DNA repair genes as risk factors for bladder cancer and breast cancer and their impact on radiotherapy outcomes. Carcinogenesis 33:581–586

    Article  CAS  PubMed  Google Scholar 

  74. Clop A, Marcq F, Takeda H et al (2006) A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet 38:813–818

    Article  CAS  PubMed  Google Scholar 

  75. Abelson JF, Kwan KY, O’Roak BJ et al (2005) Sequence variants in SLITRK1 are associated with Tourette’s syndrome. Science 310:317–320

    Article  CAS  PubMed  Google Scholar 

  76. Chin LJ, Ratner E, Leng S et al (2008) A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non-small cell lung cancer risk. Cancer Res 68:8535–8540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nelson HH, Christensen BC, Plaza SL et al (2010) KRAS mutation, KRAS-LCS6 polymorphism, and non-small cell lung cancer. Lung Cancer 69:51–53

    Article  CAS  PubMed  Google Scholar 

  78. Pilarski R, Patel DA, Weitzel J et al (2012) The KRAS-variant is associated with risk of developing double primary breast and ovarian cancer. PLoS One 7:e37891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Du W, Zhu J, Chen Y et al (2017) Variant SNPs at the microRNA complementary site in the B7H1 3’untranslated region increase the risk of nonsmall cell lung cancer. Mol Med Rep 16:2682–2690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lee SY, Choi JE, Jeon HS et al (2015) A genetic variation in microRNA target site of KRT81 gene is associated with survival in early-stage non-small-cell lung cancer. Ann Oncol 26:1142–1148

    Article  CAS  PubMed  Google Scholar 

  81. Chen S, He Y, Ding J et al (2010) An insertion/deletion polymorphism in the 3′ untranslated region of beta-transducin repeat-containing protein (betaTrCP) is associated with susceptibility for hepatocellular carcinoma in Chinese. Biochem Biophys Res Commun 391:552–556

    Article  CAS  PubMed  Google Scholar 

  82. Tan C, Liu S, Tan S et al (2015) Polymorphisms in microRNA target sites of forkhead box O genes are associated with hepatocellular carcinoma. PLoS One 10:e0119210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Kang BW, Jeon HS, Chae YS et al (2016) Impact of genetic variation in MicroRNA-binding site on susceptibility to colorectal cancer. Anticancer Res 36:3353–3361

    CAS  PubMed  Google Scholar 

  84. Lee AR, Park J, Jung KJ et al (2016) Genetic variation rs7930 in the miR-4273-5p target site is associated with a risk of colorectal cancer. Onco Targets Ther 9:6885–6895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Shaker OG, Mohammed SR, Mohammed AM et al (2018) Impact of microRNA-375 and its target gene SMAD-7 polymorphism on susceptibility of colorectal cancer. J Clin Lab Anal 32:e22215

    Article  CAS  Google Scholar 

  86. Yang L, Li Y, Cheng M et al (2012) A functional polymorphism at microRNA-629-binding site in the 3′-untranslated region of NBS1 gene confers an increased risk of lung cancer in southern and eastern Chinese population. Carcinogenesis 33:338–347

    Article  CAS  PubMed  Google Scholar 

  87. Lin J, Zandi R, Shao R et al (2017) A miR-SNP biomarker linked to an increased lung cancer survival by miRNA-mediated down-regulation of FZD4 expression and Wnt signaling. Sci Rep 7:9029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Petkevicius V, Salteniene V, Juzenas S et al (2017) Polymorphisms of microRNA target genes IL12B, INSR, CCND1 and IL10 in gastric cancer. World J Gastroenterol 23:3480–3487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang C, Zhao Y, Ming Y et al (2016) A polymorphism at the microRNA binding site in the 3′-untranslated region of C14orf101 is associated with the risk of gastric cancer development. Exp Ther Med 12:1867–1872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Song X, Zhong H, Zhou J et al (2015) Association between polymorphisms of microRNA-binding sites in integrin genes and gastric cancer in Chinese Han population. Tumour Biol 36:2785–2792

    Article  CAS  PubMed  Google Scholar 

  91. Wang B, Yang H, Shen L et al (2016) Rs56288038 (C/G) in 3’UTR of IRF-1 regulated by MiR-502-5p promotes gastric cancer development. Cell Physiol Biochem 40:391–399

    Article  CAS  PubMed  Google Scholar 

  92. Manikandan M, Munirajan AK (2014) Single nucleotide polymorphisms in microRNA binding sites of oncogenes: implications in cancer and pharmacogenomics. OMICS 18:142–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. de Almeida RC, Chagas VS, Castro MAA et al (2018) Integrative analysis identifies genetic variants associated with autoimmune diseases affecting putative MicroRNA binding sites. Front Genet 9:139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Manley W, Moreau MP, Azaro M et al (2018) Validation of a microRNA target site polymorphism in H3F3B that is potentially associated with a broad schizophrenia phenotype. PLoS One 13:e0194233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Hou Y, Liang W, Zhang J et al (2018) Schizophrenia-associated rs4702 G allele-specific downregulation of FURIN expression by miR-338-3p reduces BDNF production. Schizophr Res 199:176–180

    Article  PubMed  Google Scholar 

  96. Li T, Kuang Y, Li B (2016) The genetic variants in 3′ untranslated region of voltage-gated sodium channel alpha 1 subunit gene affect the mRNA-microRNA interactions and associate with epilepsy. BMC Genet 17:111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Tang H, Cheng Z, Ma W et al (2018) TLR10 and NFKBIA contributed to the risk of hip osteoarthritis: systematic evaluation based on Han Chinese population. Sci Rep 8:10243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Muralidhar B, Winder D, Murray M et al (2011) Functional evidence that Drosha overexpression in cervical squamous cell carcinoma affects cell phenotype and microRNA profiles. J Pathol 224:496–507

    Article  CAS  PubMed  Google Scholar 

  99. Rotunno M, Zhao Y, Bergen AW et al (2010) Inherited polymorphisms in the RNA-mediated interference machinery affect microRNA expression and lung cancer survival. Br J Cancer 103:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Walz AL, Ooms A, Gadd S et al (2015) Recurrent DGCR8, DROSHA, and SIX homeodomain mutations in favorable histology Wilms tumors. Cancer Cell 27:286–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wegert J, Ishaque N, Vardapour R et al (2015) Mutations in the SIX1/2 pathway and the DROSHA/DGCR8 miRNA microprocessor complex underlie high-risk blastemal type Wilms tumors. Cancer Cell 27:298–311

    Article  CAS  PubMed  Google Scholar 

  102. Rakheja D, Chen KS, Liu Y et al (2014) Somatic mutations in DROSHA and DICER1 impair microRNA biogenesis through distinct mechanisms in Wilms tumours. Nat Commun 2:4802

    Article  CAS  PubMed  Google Scholar 

  103. Caruso S, Calderaro J, Letouze E et al (2017) Germline and somatic DICER1 mutations in familial and sporadic liver tumors. J Hepatol 66:734–742

    Article  CAS  PubMed  Google Scholar 

  104. Zahedi F, Nazari-Jahantigh M, Zhou Z et al (2017) Dicer generates a regulatory microRNA network in smooth muscle cells that limits neointima formation during vascular repair. Cell Mol Life Sci 74:359–372

    Article  CAS  PubMed  Google Scholar 

  105. Chmielarz P, Konovalova J, Najam SS et al (2017) Dicer and microRNAs protect adult dopamine neurons. Cell Death Dis 8:e2813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Stewart CJ, Charles A, Foulkes WD (2016) Gynecologic manifestations of the DICER1 syndrome. Surg Pathol Clin 9:227–241

    Article  PubMed  Google Scholar 

  107. Wen J, Gao Q, Wang N et al (2017) Association of microRNA-related gene XPO5 rs11077 polymorphism with susceptibility to thyroid cancer. Medicine (Baltimore) 96:e6351

    Article  CAS  Google Scholar 

  108. Wu K, He J, Pu W et al (2018) The role of Exportin-5 in MicroRNA biogenesis and cancer. Genomics Proteomics Bioinformatics 16:120–126

    Article  PubMed  PubMed Central  Google Scholar 

  109. Melo SA, Moutinho C, Ropero S et al (2010) A genetic defect in exportin-5 traps precursor microRNAs in the nucleus of cancer cells. Cancer Cell 18:303–315

    Article  CAS  PubMed  Google Scholar 

  110. Yi T, Arthanari H, Akabayov B et al (2015) eIF1A augments Ago2-mediated Dicer-independent miRNA biogenesis and RNA interference. Nat Commun 6:7194

    Article  PubMed  Google Scholar 

  111. Piletic K, Kunej T (2016) MicroRNA epigenetic signatures in human disease. Arch Toxicol 90:2405–2419

    Article  CAS  PubMed  Google Scholar 

  112. Bueno MJ, Perez de Castro I, Gomez de Cedron M et al (2008) Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell 13:496–506

    Article  CAS  PubMed  Google Scholar 

  113. Min L, Wang F, Hu S et al (2018) Aberrant microRNA-137 promoter methylation is associated with lymph node metastasis and poor clinical outcomes in non-small cell lung cancer. Oncol Lett 15:7744–7750

    PubMed  PubMed Central  Google Scholar 

  114. Deng Y, Zhao F, Hui L et al (2017) Suppressing miR-199a-3p by promoter methylation contributes to tumor aggressiveness and cisplatin resistance of ovarian cancer through promoting DDR1 expression. J Ovarian Res 10:50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Leplae R, Tramontano A (1995) PLANET: a phage library analysis expert tool. Physiol Chem Phys Med NMR 27:331–338

    CAS  PubMed  Google Scholar 

  116. Shen Y, Pan X, Zhao H (2014) The histone demethylase PHF8 is an oncogenic protein in human non-small cell lung cancer. Biochem Biophys Res Commun 451:119–125

    Article  CAS  PubMed  Google Scholar 

  117. Yan M, Chen C, Gong W et al (2015) miR-21-3p regulates cardiac hypertrophic response by targeting histone deacetylase-8. Cardiovasc Res 105:340–352

    Article  CAS  PubMed  Google Scholar 

  118. Zhou M, Zeng J, Wang X et al (2015) Histone demethylase RBP2 decreases miR-21 in blast crisis of chronic myeloid leukemia. Oncotarget 6:1249–1261

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sermin Genc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Olcum, M., Tufekci, K.U., Genc, S. (2022). MicroRNAs in Genetic Etiology of Human Diseases. In: Allmer, J., Yousef, M. (eds) miRNomics. Methods in Molecular Biology, vol 2257. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1170-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1170-8_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1169-2

  • Online ISBN: 978-1-0716-1170-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics