Skip to main content

DMS-MaPseq for Genome-Wide or Targeted RNA Structure Probing In Vitro and In Vivo

  • Protocol
Functional Analysis of Long Non-Coding RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2254))

Abstract

DMS-MaPseq is a chemical probing method combined with high throughput sequencing used to study RNA structure. Here we present a flexible protocol for adherent and suspension mammalian cells to analyze RNA structure in vitro or in vivo. The protocol provides instruction on either a targeted sequencing of a lncRNA of interest or a transcriptome-wide approach that provides structural data on all expressed RNAs, including lncRNAs. This technique is particularly useful for comparing in vitro and in vivo structure of RNAs, determining how mutations and polymorphisms with phenotypic effects influence RNA structure and analyzing RNA structure across the entire transcriptome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith MA, Gesell T, Stadler PF et al (2013) Widespread purifying selection on RNA structure in mammals. Nucleic Acids Res 41(17):8220–8236. https://doi.org/10.1093/nar/gkt596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Field AR, Jacobs FMJ, Fiddes IT et al (2019) Structurally conserved primate LncRNAs are transiently expressed during human cortical differentiation and influence cell-type-specific genes. Stem Cell Rep 12(2):245–257. https://doi.org/10.1016/j.stemcr.2018.12.006

    Article  CAS  Google Scholar 

  3. Ulitsky I, Shkumatava A, Jan CH et al (2011) Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 147(7):1537–1550. https://doi.org/10.1016/j.cell.2011.11.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Johnsson P, Lipovich L, Grander D et al (2014) Evolutionary conservation of long non-coding RNAs; sequence, structure, function. Biochim Biophys Acta 1840(3):1063–1071. https://doi.org/10.1016/j.bbagen.2013.10.035

    Article  CAS  PubMed  Google Scholar 

  5. Yan K, Arfat Y, Li D et al (2016) Structure prediction: new insights into decrypting long noncoding RNAs. Int J Mol Sci 17(1). https://doi.org/10.3390/ijms17010132

  6. Novikova IV, Hennelly SP, Sanbonmatsu KY (2012) Structural architecture of the human long non-coding RNA, steroid receptor RNA activator. Nucleic Acids Res 40(11):5034–5051. https://doi.org/10.1093/nar/gks071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Somarowthu S, Legiewicz M, Chillon I et al (2015) HOTAIR forms an intricate and modular secondary structure. Mol Cell 58(2):353–361. https://doi.org/10.1016/j.molcel.2015.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fang R, Moss WN, Rutenberg-Schoenberg M et al (2015) Probing Xist RNA structure in cells using targeted structure-Seq. PLoS Genet 11(12):e1005668. https://doi.org/10.1371/journal.pgen.1005668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Smola MJ, Christy TW, Inoue K et al (2016) SHAPE reveals transcript-wide interactions, complex structural domains, and protein interactions across the Xist lncRNA in living cells. Proc Natl Acad Sci U S A 113(37):10322–10327. https://doi.org/10.1073/pnas.1600008113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang B, Mao YS, Diermeier SD et al (2017) Identification and characterization of a class of MALAT1-like genomic loci. Cell Rep 19(8):1723–1738. https://doi.org/10.1016/j.celrep.2017.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu F, Somarowthu S, Pyle AM (2017) Visualizing the secondary and tertiary architectural domains of lncRNA RepA. Nat Chem Biol 13(3):282–289. https://doi.org/10.1038/nchembio.2272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Qian X, Zhao J, Yeung PY et al (2019) Revealing lncRNA structures and interactions by sequencing-based approaches. Trends Biochem Sci 44(1):33–52. https://doi.org/10.1016/j.tibs.2018.09.012

    Article  CAS  PubMed  Google Scholar 

  13. Zampetaki A, Albrecht A, Steinhofel K (2018) Long non-coding RNA structure and function: is there a link? Front Physiol 9:1201. https://doi.org/10.3389/fphys.2018.01201

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zubradt M, Gupta P, Persad S et al (2017) DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo. Nat Methods 14(1):75–82. https://doi.org/10.1038/nmeth.4057

    Article  CAS  PubMed  Google Scholar 

  15. Reuter JS, Mathews DH (2010) RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics 11:129. https://doi.org/10.1186/1471-2105-11-129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Adiconis X, Borges-Rivera D, Satija R et al (2013) Comparative analysis of RNA sequencing methods for degraded or low-input samples. Nat Methods 10(7):623–629. https://doi.org/10.1038/nmeth.2483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Darty K, Denise A, Ponty Y (2009) VARNA: interactive drawing and editing of the RNA secondary structure. Bioinformatics 25(15):1974–1975. https://doi.org/10.1093/bioinformatics/btp250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvi Rouskin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Tomezsko, P., Swaminathan, H., Rouskin, S. (2021). DMS-MaPseq for Genome-Wide or Targeted RNA Structure Probing In Vitro and In Vivo. In: Cao, H. (eds) Functional Analysis of Long Non-Coding RNAs. Methods in Molecular Biology, vol 2254. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1158-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1158-6_13

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1157-9

  • Online ISBN: 978-1-0716-1158-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics