Skip to main content

Disclosing Allostery Through Protein Contact Networks

  • Protocol
  • First Online:
Allostery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2253))

Abstract

Proteins are located in the twilight zone between chemistry and biology, where a peculiar kind of complexity starts. Proteins are the smallest ‘devices’ showing a sensible adaptation to their environment by the production of appropriate behavior when facing a specific stimulus. This fact qualifies (from the ‘effector’ side) proteins as nanomachines working as catalysts, motors, or switches. However (from the sensor side), the need to single out the ‘specific stimulus’ out of thermal noise qualifies proteins as information processing devices. Allostery corresponds to the modification of the configuration (in a broad sense) of the protein molecule in response to a specific stimulus in a non-strictly local way, thereby connecting the sensor and effector sides of the nanomachine. This is why the ‘disclosing’ of allostery phenomenon is at the very heart of protein function; in this chapter, we will demonstrate how a network-based representation of protein structure in terms of nodes (aminoacid residues) and edges (effective contacts between residues) is the natural language for getting rid of allosteric phenomena and, more in general, of protein structure/function relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Di Paola L, Giuliani A (2015) Protein contact network topology: a natural language for allostery. Curr Opin Struct Biol 31:43–48. https://doi.org/10.1016/j.sbi.2015.03.001

    Article  CAS  PubMed  Google Scholar 

  2. Tsai CJ, del Sol A, Nussinov R (2009) Protein allostery, signal transmission and dynamics: a classification scheme of allosteric mechanisms. Mol BioSyst 5:207–216

    Article  CAS  Google Scholar 

  3. De Ruvo M, Giuliani A, Paci P et al (2012) Shedding light on protein-ligand binding by graph theory: the topological nature of allostery. Biophys Chem 165–166:21–29. https://doi.org/10.1016/j.bpc.2012.03.001

    Article  CAS  PubMed  Google Scholar 

  4. Giuliani A, Filippi S, Bertolaso M (2014) Why network approach can promote a new way of thinking in biology. Front Genet. https://doi.org/10.3389/fgene.2014.00083

  5. Watts DJ, Strogatz SH (1998) Collective dynamics of “small-world” networks. Nature 393:440–442

    Article  CAS  Google Scholar 

  6. Di Paola L, De Ruvo M, Paci P et al (2013) Protein contact networks: an emerging paradigm in chemistry. Chem Rev 113:1598–1613. https://doi.org/10.1021/cr3002356

    Article  CAS  PubMed  Google Scholar 

  7. Berman H, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  Google Scholar 

  8. Liu T, Lin Y, Wen X et al (2007) BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res 35:198–201

    Article  Google Scholar 

  9. Wang R, Fang X, Lu Y, Wang S (2004) The PDBbind database: collection of binding affinities for protein-ligand complexes with known three-dimensional structures. J Med Chem 47:2977–2980

    Article  CAS  Google Scholar 

  10. Yang J, Roy A, Zhang Y (2013) BioLiP: a semi-manually curated database for biologically relevant ligand-protein interactions. Nucleic Acids Res 41:1096–1103

    Article  Google Scholar 

  11. De Ruvo M, Di Paola L, Giuliani A et al (2012) Shedding light on protein–ligand binding by graph theory: the topological nature of allostery. Biophys Chem 165–166:21–29. https://doi.org/10.1016/j.bpc.2012.03.001

    Article  CAS  PubMed  Google Scholar 

  12. Deo N, Pang C (1984) Shortest-path algorithms: taxonomy and annotation. Networks 14:275–323. https://doi.org/10.1002/net.3230140208

    Article  Google Scholar 

  13. Johnson DB (1977) Efficient algorithms for shortest paths in sparse networks. J ACM 24:1–13. https://doi.org/10.1145/321992.321993

    Article  Google Scholar 

  14. Hu G, Di Paola L, Liang Z, Giuliani A (2017) Comparative study of elastic network model and protein contact network for protein complexes: the hemoglobin case. Biomed Res Int 2017:2483264

    PubMed  PubMed Central  Google Scholar 

  15. Santoni D, Paci P, Paola LD, Giuliani A (2016) Are proteins just coiled cords? Local and global analysis of contact maps reveals the backbone-dependent nature of proteins. Curr Protein Pept Sci 17:26–29

    Article  CAS  Google Scholar 

  16. Borgatti SP, Everett MG (2006) A graph-theoretic perspective on centrality. Soc Networks 28:466–484. https://doi.org/10.1016/j.socnet.2005.11.005

    Article  Google Scholar 

  17. Sabidussi G (1966) The centrality index of a graph. Psychometrika 31:581–603. https://doi.org/10.1007/BF02289527

    Article  CAS  PubMed  Google Scholar 

  18. Amitai G, Shemesh A, Sitbon E et al (2004) Network analysis of protein structures identifies functional residues. J Mol Biol 344:1135–1146. https://doi.org/10.1016/j.jmb.2004.10.055

    Article  CAS  PubMed  Google Scholar 

  19. Bonchev DD, Rouvray DH (1990) Chemical graph theory: introduction and fundamentals. Gordon & Breach Science Publishers, London

    Google Scholar 

  20. Cimini S, Di Paola L, Giuliani A et al (2016) GH32 family activity: a topological approach through protein contact networks. Plant Mol Biol:1–10

    Google Scholar 

  21. Di Paola L, Mei G, Di Venere A, Giuliani A (2016) Exploring the stability of dimers through protein structure topology. Curr Protein Pept Sci 17:30–36. https://doi.org/10.2174/1389203716666150923104054

    Article  CAS  PubMed  Google Scholar 

  22. del Sol A, Araúzo-Bravo MJ, Amoros D, Nussinov R (2007) Modular architecture of protein structures and allosteric communications: potential implications for signaling proteins and regulatory linkages. Genome Biol 8:R92

    Article  Google Scholar 

  23. Tasdighian S, Di Paola L, De Ruvo M et al (2013) Modules identification in protein structures: the topological and geometrical solutions. J Chem Inf Model 54:159–168

    Article  Google Scholar 

  24. Cumbo F, Paci P, Santoni D et al (2014) GIANT: a cytoscape plugin for modular networks. PLoS One 9:e105001. https://doi.org/10.1371/journal.pone.0105001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tasdighian S, Di Paola L, De Ruvo M et al (2014) Modules identification in protein structures: the topological and geometrical solutions. J Chem Inf Model 54:159–168. https://doi.org/10.1021/ci400218v

    Article  CAS  PubMed  Google Scholar 

  26. Tsai CJ, del Sol A, Nussinov R (2008) Allostery: absence of a change in shape does not imply that allostery is not at play. J Mol Biol 378:1–11

    Article  CAS  Google Scholar 

  27. Nussinov R, Tsai C-J (2012) The different ways through which specificity works in orthosteric and allosteric drugs. Curr Pharm Des 18:1311–1316. https://doi.org/10.2174/138920012799362855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Csermely P, Nussinov R, Szilágyi A (2013) From allosteric drugs to allo-network drugs: state of the art and trends of design, synthesis and computational methods. Curr Top Med Chem 13:2–4. https://doi.org/10.2174/1568026611313010002

    Article  CAS  PubMed  Google Scholar 

  29. Di Paola L, Platania CBM, Oliva G et al (2015) Characterization of protein–protein interfaces through a protein contact network approach. Front Bioeng Biotechnol 3:170. https://doi.org/10.3389/fbioe.2015.00170

    Article  PubMed  PubMed Central  Google Scholar 

  30. Di Paola L, De Ruvo M, Paci P et al (2012) Protein contact networks: an emerging paradigm in chemistry. Chem Rev 113:1598–1613

    Article  Google Scholar 

  31. Viloria JS, Allega MF, Lambrughi M, Papaleo E (2017) An optimal distance cutoff for contact-based Protein Structure Networks using side chain center of masses. Sci Rep 7:2838. https://doi.org/10.1038/s41598-017-01498-6

    Article  CAS  Google Scholar 

  32. Brandes U (2001) A faster algorithm for betweenness centrality. J Math Sociol 25:163–177. https://doi.org/10.1080/0022250X.2001.9990249

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa Di Paola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Di Paola, L., Mei, G., Di Venere, A., Giuliani, A. (2021). Disclosing Allostery Through Protein Contact Networks. In: Di Paola, L., Giuliani, A. (eds) Allostery. Methods in Molecular Biology, vol 2253. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1154-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1154-8_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1153-1

  • Online ISBN: 978-1-0716-1154-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics