Skip to main content

The PyInteraph Workflow for the Study of Interaction Networks From Protein Structural Ensembles

  • Protocol
  • First Online:
Allostery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2253))

  • 898 Accesses

Abstract

PyInteraph is a software package designed for the analysis of structural communication from conformational ensembles, such as those derived from in silico simulations, under the formalism of protein structure networks. We demonstrate its usage for the calculation and analysis of intramolecular interaction networks derived from three different types of interactions, as well as with a more general protocol based on distances between centers of mass. We use the xPyder PyMOL plug-in to visualize such networks on the three-dimensional structure of the protein. We showcase our protocol on a molecular dynamics trajectory of the Cyclophilin A wild-type enzyme, a well-studied protein in which different allosteric mechanisms have been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ribeiro AAST, Ortiz V (2016) A chemical perspective on allostery. Chem Rev 116:6488–6502. https://doi.org/10.1021/acs.chemrev.5b00543

    Article  CAS  PubMed  Google Scholar 

  2. Papaleo E, Saladino G, Lambrughi M, Lindorff-Larsen K, Gervasio FL, Nussinov R (2016) The role of protein loops and linkers in conformational dynamics and allostery. Chem Rev 116:6391–6423. https://doi.org/10.1021/acs.chemrev.5b00623

    Article  CAS  PubMed  Google Scholar 

  3. Guo J, Zhou H-X (2016) Protein allostery and conformational dynamics. Chemical Reviews 116:6503–6515. https://doi.org/10.1021/acs.chemrev.5b00590

  4. del Sol A, Tsai C-J, Ma B, Nussinov R (2009) The origin of allosteric functional modulation: multiple pre-existing pathways. Structure 17:1042–1050. https://doi.org/10.1016/j.str.2009.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Feher VA, Durrant JD, Van Wart AT, Amaro RE (2014) Computational approaches to mapping allosteric pathways. Curr Opin Struct Biol 25:98–103. https://doi.org/10.1016/j.sbi.2014.02.004

    Article  CAS  PubMed  Google Scholar 

  6. Hertig S, Latorraca NR, Dror RO (2016) Revealing atomic-level mechanisms of protein allostery with molecular dynamics simulations. PLoS Comput Biol 12:e1004746. https://doi.org/10.1371/journal.pcbi.1004746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Allain A, Chauvot de Beauchêne I, Langenfeld F, Guarracino Y, Laine E, Tchertanov L (2014) Allosteric pathway identification through network analysis: from molecular dynamics simulations to interactive 2D and 3D graphs. Faraday Discuss 169:303–321. https://doi.org/10.1039/c4fd00024b

    Article  CAS  PubMed  Google Scholar 

  8. Tiberti M, Invernizzi G, Lambrughi M, Inbar Y, Schreiber G, Papaleo E (2014) PyInteraph: a framework for the analysis of interaction networks in structural ensembles of proteins. J Chem Inf Model 54:1537–1551. https://doi.org/10.1021/ci400639r

    Article  CAS  PubMed  Google Scholar 

  9. Bhattacharyya M, Ghosh S, Vishveshwara S (2016) Protein structure and function: looking through the network of side-chain interactions. Curr Protein Pept Sci 17:4–25

    Article  CAS  Google Scholar 

  10. Di Paola L, De Ruvo M, Paci P, Santoni D, Giuliani A (2013) Protein contact networks: an emerging paradigm in chemistry. Chem Rev 113:1598–1613. https://doi.org/10.1021/cr3002356

    Article  CAS  PubMed  Google Scholar 

  11. Yan W, Zhou J, Sun M, Chen J, Hu G, Shen B (2014) The construction of an amino acid network for understanding protein structure and function. Amino Acids 46:1419–1439. https://doi.org/10.1007/s00726-014-1710-6

    Article  CAS  PubMed  Google Scholar 

  12. Di Paola L, Giuliani A (2015) Protein contact network topology: a natural language for allostery. Curr Opin Struct Biol 31:43–48. https://doi.org/10.1016/j.sbi.2015.03.001

    Article  CAS  PubMed  Google Scholar 

  13. Hu G, Zhou J, Yan W, Chen J, Shen B (2013) The topology and dynamics of protein complexes: insights from intra- molecular network theory. Curr Protein Pept Sci 14:121–132

    Article  CAS  Google Scholar 

  14. Sethi A, Eargle J, Black AA, Luthey-Schulten Z (2009) Dynamical networks in tRNA:protein complexes. Proc Natl Acad Sci U S A 106:6620–6625. https://doi.org/10.1073/pnas.0810961106

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pandini A, Fornili A, Fraternali F, Kleinjung J (2012) Detection of allosteric signal transmission by information-theoretic analysis of protein dynamics. FASEB J 26:868–881. https://doi.org/10.1096/fj.11-190868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pandini A, Fornili A, Fraternali F, Kleinjung J (2013) GSATools: analysis of allosteric communication and functional local motions using a structural alphabet. Bioinformatics 29:2053–2055. https://doi.org/10.1093/bioinformatics/btt326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Potapov V, Cohen M, Inbar Y, Schreiber G (2010) Protein structure modelling and evaluation based on a 4-distance description of side-chain interactions. BMC Bioinformatics 11:374. https://doi.org/10.1186/1471-2105-11-374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jónsdóttir LB, Ellertsson BÖ, Invernizzi G, Magnúsdóttir M, Thorbjarnardóttir SH, Papaleo E, Kristjánsson MM (2014) The role of salt bridges on the temperature adaptation of aqualysin I, a thermostable subtilisin-like proteinase. Biochim Biophys Acta 1844:2174–2181. https://doi.org/10.1016/j.bbapap.2014.08.011

    Article  CAS  PubMed  Google Scholar 

  19. Lambrughi M, De Gioia L, Gervasio FL, Lindorff-Larsen K, Nussinov R, Urani C, Bruschi M, Papaleo E (2016) DNA-binding protects p53 from interactions with cofactors involved in transcription-independent functions. Nucleic Acids Res 44:9096–9109. https://doi.org/10.1093/nar/gkw770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Marino V, Scholten A, Koch K-W, Dell'Orco D (2015) Two retinal dystrophy-associated missense mutations in GUCA1A with distinct molecular properties result in a similar aberrant regulation of the retinal guanylate cyclase. Hum Mol Genet 24:6653–6666. https://doi.org/10.1093/hmg/ddv370

    Article  CAS  PubMed  Google Scholar 

  21. Papaleo E, Parravicini F, Grandori R, De Gioia L, Brocca S (2014) Structural investigation of the cold-adapted acylaminoacyl peptidase from Sporosarcina psychrophila by atomistic simulations and biophysical methods. Biochim Biophys Acta 1844:2203–2213. https://doi.org/10.1016/j.bbapap.2014.09.018

    Article  CAS  PubMed  Google Scholar 

  22. Óskarsson KR, Nygaard M, Ellertsson BÖ, Thorbjarnardóttir SH, Papaleo E, Kristjánsson MM (2016) A single mutation Gln142Lys doubles the catalytic activity of VPR, a cold adapted subtilisin-like serine proteinase. Biochim Biophys Acta 1864:1436–1443. https://doi.org/10.1016/j.bbapap.2016.07.003

    Article  CAS  PubMed  Google Scholar 

  23. Nygaard M, Terkelsen T, Vidas Olsen A, Sora V, Salamanca Viloria J, Rizza F, Bergstrand-Poulsen S, Di Marco M, Vistesen M, Tiberti M, Lambrughi M, Jäättelä M, Kallunki T, Papaleo E (2016) The mutational landscape of the oncogenic MZF1 SCAN domain in cancer. Front Mol Biosci 3:78. https://doi.org/10.3389/fmolb.2016.00078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Michetti D, Brandsdal BO, Bon D, Isaksen GV, Tiberti M, Papaleo E (2017) A comparative study of cold- and warm-adapted endonucleases A using sequence analyses and molecular dynamics simulations. PLoS One 12:e0169586. https://doi.org/10.1371/journal.pone.0169586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Salamanca Viloria J, Allega MF, Lambrughi M, Papaleo E (2017) An optimal distance cutoff for contact-based protein structure networks using side-chain centers of mass. Sci Rep 7:2838. https://doi.org/10.1038/s41598-017-01498-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Marino V, Dell'Orco D (2016) Allosteric communication pathways routed by Ca2+/Mg2+ exchange in GCAP1 selectively switch target regulation modes. Sci Rep 6:517. https://doi.org/10.1038/srep34277

    Article  CAS  Google Scholar 

  27. Lambrughi M, Lucchini M, Pignataro M, Sola M, Bortolotti CA (2016) The dynamics of the β-propeller domain in Kelch protein KLHL40 changes upon nemaline myopathy-associated mutation. RSC Adv 6:34043–34054. https://doi.org/10.1039/C6RA06312H

    Article  CAS  Google Scholar 

  28. Singh B, Bulusu G, Mitra A (2016) Effects of point mutations on the thermostability of B. subtilis lipase: investigating nonadditivity. J Comput Aided Mol Des 30:899–916. https://doi.org/10.1007/s10822-016-9978-0

    Article  CAS  PubMed  Google Scholar 

  29. Otaki H, Taguchi Y, Nishida N (2018) Molecular dynamics simulation reveals that switchable combinations of β-sheets underlie the prion-like properties of α-synuclein amyloids. https://doi.org/10.1101/326462

  30. Pasi M, Tiberti M, Arrigoni A, Papaleo E (2012) xPyder: a PyMOL plugin to analyze coupled residues and their networks in protein structures. J Chem Inf Model 52:1865–1874. https://doi.org/10.1021/ci300213c

    Article  CAS  PubMed  Google Scholar 

  31. The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC.

    Google Scholar 

  32. Vijayan RSK, Arnold E, Das K (2014) Molecular dynamics study of HIV-1 RT-DNA-nevirapine complexes explains NNRTI inhibition and resistance by connection mutations. Proteins 82:815–829. https://doi.org/10.1002/prot.24460

    Article  CAS  PubMed  Google Scholar 

  33. Hashem S, Tiberti M, Fornili A (2017) Allosteric modulation of cardiac myosin dynamics by omecamtiv mecarbil. PLoS Comput Biol 13:e1005826. https://doi.org/10.1371/journal.pcbi.1005826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guizado TRC (2014) Analysis of the structure and dynamics of human serum albumin. J Mol Model 20:43. https://doi.org/10.1007/s00894-014-2450-y

    Article  CAS  Google Scholar 

  35. Papaleo E, Renzetti G, Invernizzi G, Ásgeirsson B (2013) Dynamics fingerprint and inherent asymmetric flexibility of a cold-adapted homodimeric enzyme. A case study of the vibrio alkaline phosphatase. Biochim Biophys Acta Gen Subj 1830:2970–2980. https://doi.org/10.1016/j.bbagen.2012.12.011

    Article  CAS  Google Scholar 

  36. Lambrughi M, Papaleo E, Testa L, Brocca S, De Gioia L, Grandori R (2012) Intramolecular interactions stabilizing compact conformations of the intrinsically disordered kinase-inhibitor domain of Sic1: a molecular dynamics investigation. Front Physiol 3:435. https://doi.org/10.3389/fphys.2012.00435

    Article  PubMed  PubMed Central  Google Scholar 

  37. Invernizzi G, Tiberti M, Lambrughi M, Lindorff-Larsen K, Papaleo E (2014) Communication routes in ARID domains between distal residues in helix 5 and the DNA-binding loops. PLoS Comput Biol 10:e1003744. https://doi.org/10.1371/journal.pcbi.1003744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Invernizzi G, Lambrughi M, Regonesi ME, Tortora P, Papaleo E (2013) The conformational ensemble of the disordered and aggregation-protective 182-291 region of ataxin-3. Biochim Biophys Acta 1830:5236–5247. https://doi.org/10.1016/j.bbagen.2013.07.007

    Article  CAS  PubMed  Google Scholar 

  39. Nigro P, Pompilio G, Capogrossi MC (2013) Cyclophilin A: a key player for human disease. Cell Death Dis 4:e888–e888. https://doi.org/10.1038/cddis.2013.410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Papaleo E, Sutto L, Gervasio FL, Lindorff-Larsen K (2014) Conformational changes and free energies in a proline isomerase. J Chem Theory Comput 10:4169–4174. https://doi.org/10.1021/ct500536r

    Article  CAS  PubMed  Google Scholar 

  41. Schlegel J, Armstrong GS, Redzic JS, Zhang F, Eisenmesser EZ (2009) Characterizing and controlling the inherent dynamics of cyclophilin-A. Protein Sci 18:811–824. https://doi.org/10.1002/pro.89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Holliday MJ, Camilloni C, Armstrong GS, Vendruscolo M, Eisenmesser EZ (2017) Networks of dynamic allostery regulate enzyme function. Structure 25:276–286. https://doi.org/10.1016/j.str.2016.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Doshi U, Holliday MJ, Eisenmesser EZ, Hamelberg D (2016) Dynamical network of residue–residue contacts reveals coupled allosteric effects in recognition, catalysis, and mutation. Proc Natl Acad Sci U S A 113:4735–4740. https://doi.org/10.1073/pnas.1523573113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rodriguez-Bussey I, Yao X-Q, Shouaib AD, Lopez J, Hamelberg D (2018) Decoding allosteric communication pathways in cyclophilin a with a comparative analysis of perturbed conformational ensembles. J Phys Chem B 122:6528–6535. https://doi.org/10.1021/acs.jpcb.8b03824

    Article  CAS  PubMed  Google Scholar 

  45. Fraser JS, Clarkson MW, Degnan SC, Erion R, Kern D, Alber T (2009) Hidden alternative structures of proline isomerase essential for catalysis. Nature 462:669–673. https://doi.org/10.1038/nature08615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Piana S, Lindorff-Larsen K, Shaw DE (2011) How robust are protein folding simulations with respect to force field parameterization? Biophys J 100:L47–L49. https://doi.org/10.1016/j.bpj.2011.03.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jelesarov I, Karshikoff A (2009) Defining the role of salt bridges in protein stability. Methods Mol Biol 490:227–260. https://doi.org/10.1007/978-1-59745-367-7_10

    Article  CAS  PubMed  Google Scholar 

  48. Kumar S, Nussinov R (2002) Close-range electrostatic interactions in proteins. Chembiochem 3:604–617. https://doi.org/10.1002/1439-7633(20020703)3:7<604::AID-CBIC604>3.0.CO;2-X

    Article  CAS  PubMed  Google Scholar 

  49. Eisenmesser EZ, Millet O, Labeikovsky W, Korzhnev DM, Wolf-Watz M, Bosco DA, Skalicky JJ, Kay LE, Kern D (2005) Intrinsic dynamics of an enzyme underlies catalysis. Nature 438:117–121. https://doi.org/10.1038/nature04105

    Article  CAS  PubMed  Google Scholar 

  50. Michaud-Agrawal N, Denning EJ, Woolf TB, Beckstein O (2011) MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. J Comput Chem 32:2319–2327. https://doi.org/10.1002/jcc.21787

  51. Gowers RJ, Linke M, Barnoud J, Reddy TJE, Melo MN, Seyler SL, Dotson DL, Domanski J, Buchoux S, Kenney IM, Beckstein O (2016) MDAnalysis: A Python package for the rapid analysis of molecular dynamics simulations. In: Rostrup S, Benthall S (eds) th Python in science conference. Austin, Texas, pp 102–109

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Elena Papaleo and Emmanuelle Bignon for fruitful comments and suggestions. This work was supported by Carlsberg Foundation Distinguished Fellowship (CF18-0314), The Danish Council for Independent Research, Natural Science, Project 1 (102517), Danmarks Grundforskningsfond (DNRF125) to our group.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lambrughi, M., Sora, V., Tiberti, M. (2021). The PyInteraph Workflow for the Study of Interaction Networks From Protein Structural Ensembles. In: Di Paola, L., Giuliani, A. (eds) Allostery. Methods in Molecular Biology, vol 2253. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1154-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1154-8_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1153-1

  • Online ISBN: 978-1-0716-1154-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics