Skip to main content

Allostery: The Rebound of Proteins

  • Protocol
  • First Online:
Allostery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2253))

Abstract

The discovery of hemoglobin allosteric properties is briefly summarized and contextualized in the frame of the main biochemical revelations that characterized the first half of the XX century. In particular, the historical background of DNA, RNA, and protein structure research is recalled and the new role that protein-protein interaction may have on allosteric regulation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Funke O (1851) Über das Milzvenenblut. Zeitschrift für Ration Medizin 1:172–218

    Google Scholar 

  2. Mulder G (1838) Sur la composition de quelques substances animals. Bull des Sci Phys Nat en Neerl 1:104

    Google Scholar 

  3. Kühne W (1877) Über das Verhalten verschiedener organisirter und sog. ungeformter Fermente. Verhandlungen des naturhistorisch-medicinischen Vereins zu Heidelberg. New Ser 1:190–193

    Google Scholar 

  4. Perutz MF, Rossmann MG, Cullis AF et al (1960) Structure of haemoglobin. A three-dimensional Fourier synthesis at 5.5-{Å} resolution, obtained by X-ray analysis. Nature 185:416–422

    Article  CAS  Google Scholar 

  5. Dahm R (2005) Friedrich Miescher and the discovery of DNA. Dev Biol 278:274–288. https://doi.org/10.1016/j.ydbio.2004.11.028

    Article  CAS  PubMed  Google Scholar 

  6. Levene P (1919) The structure of yeast nucleic acid. J Biol Chem 40:415–424

    CAS  Google Scholar 

  7. Watson JD, Crick FH, Pelz B et al (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171:737–738. https://doi.org/10.1126/science.aaf5508

    Article  CAS  PubMed  Google Scholar 

  8. Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921. https://doi.org/10.1038/35057062

    Article  CAS  Google Scholar 

  9. Ohno S (1972) So much ‘junk’ DNA in our genome. Brookhaven Symp Biol 23:366–370

    CAS  PubMed  Google Scholar 

  10. Pennisi E (2012) ENCODE project writes eulogy for junk DNA. Science 337:1159–1161. https://doi.org/10.1126/science.337.6099.1159

    Article  CAS  PubMed  Google Scholar 

  11. Fedor MJ, Williamson JR (2005) The catalytic diversity of RNAs. Nat Rev Mol Cell Biol 6:399–412. https://doi.org/10.1038/nrm1647

    Article  CAS  PubMed  Google Scholar 

  12. Lee K-Y, Lee B (2017) Structural and biochemical properties of novel self-cleaving ribozymes. Molecules 22:678. https://doi.org/10.3390/molecules22040678

    Article  CAS  PubMed Central  Google Scholar 

  13. Robertson MP, Joyce GF (2012) The origins of the RNA World. Cold Spring Harb Perspect Biol 4:1. https://doi.org/10.1101/cshperspect.a003608

    Article  CAS  Google Scholar 

  14. Higgs PG, Lehman N (2014) The RNA World: molecular cooperation at the origins of life. Nat Rev Genet 16:7–17. https://doi.org/10.1038/nrg3841

    Article  CAS  PubMed  Google Scholar 

  15. Changeux JP (2011) 50th anniversary of the word ‘allosteric’. Protein Sci 20:1119–1124. https://doi.org/10.1002/pro.658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dokholyan NV (2016) Controlling allosteric networks in proteins. Chem Rev 116(11):6463–6487. https://doi.org/10.1021/acs.chemrev.5b00544

    Article  CAS  PubMed  Google Scholar 

  17. Cárdenas ML (2013) Michaelis and Menten and the long road to the discovery of cooperativity. FEBS Lett 587:2767–2771. https://doi.org/10.1016/j.febslet.2013.07.014

    Article  CAS  PubMed  Google Scholar 

  18. Cornish-Bowden A (2014) Understanding allosteric and cooperative interactions in enzymes. FEBS J 281:621–632. https://doi.org/10.1111/febs.12469

    Article  CAS  PubMed  Google Scholar 

  19. Swain JF, Gierasch LM (2006) The changing landscape of protein allostery. Curr Opin Struct Biol 16:102–108. https://doi.org/10.1016/j.sbi.2006.01.003

    Article  CAS  PubMed  Google Scholar 

  20. Motlagh HN, Wrabl JO, Li J, Hilser VJ (2014) The ensemble nature of allostery. Nature 508:331–339. https://doi.org/10.1038/nature13001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gunasekaran K, Ma B, Nussinov R (2004) Is allostery an intrinsic property of all dynamic proteins? Proteins 57:433–443

    Article  CAS  Google Scholar 

  22. Nussinov R (2016) Introduction to protein ensembles and allostery. Chem Rev 116:6263–6266. https://doi.org/10.1021/acs.chemrev.6b00283

    Article  CAS  PubMed  Google Scholar 

  23. Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118. https://doi.org/10.1016/S0022-2836(65)80285-6

    Article  CAS  PubMed  Google Scholar 

  24. Perutz MF (1970) Stereochemistry of cooperative effects in haemoglobin. Nature 228:726–734. https://doi.org/10.1038/228726a0

    Article  CAS  PubMed  Google Scholar 

  25. Buc H (2013) The design of an enzyme: a chronology on the controversy. J Mol Biol 425:1407–1409. https://doi.org/10.1016/j.jmb.2013.03.015

    Article  CAS  PubMed  Google Scholar 

  26. Crick FHC, Wyman J (2013) A footnote on allostery. J Mol Biol 425:1500–1508. https://doi.org/10.1016/j.jmb.2013.03.012

    Article  CAS  PubMed  Google Scholar 

  27. Koshland DE, Némethy G, Filmer D (1966) Comparison of experimental binding data and theoretical models in proteins containing subunits*. Biochemistry 5:365–385. https://doi.org/10.1021/bi00865a047

    Article  CAS  PubMed  Google Scholar 

  28. Brunori M (2014) Variations on the theme: allosteric control in hemoglobin. FEBS J 281:633–643. https://doi.org/10.1111/febs.12586

    Article  CAS  PubMed  Google Scholar 

  29. Fermi G, Perutz MF, Shaanan B, Fourme R (1984) The crystal structure of human deoxyhaemoglobin at 1.74 Å resolution. J Mol Biol 175:159–174. https://doi.org/10.1016/0022-2836(84)90472-8

    Article  CAS  PubMed  Google Scholar 

  30. Edwards D, Hubbard R (2006) Computer and protein crystallography. In: Ekins S (ed) Computer applications in pharmaceutical research and development. Wiley, New York, pp 277–300

    Google Scholar 

  31. Brunori M (2011) Allostery turns 50: is the vintage yet attractive? Protein Sci 20:1097–1099. https://doi.org/10.1002/pro.660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cooper A, Dryden DTF (1984) Allostery without conformational change—a plausible model. Eur Biophys J 11:103–109. https://doi.org/10.1007/BF00276625

    Article  CAS  PubMed  Google Scholar 

  33. Liu J, Nussinov R (2016) Allostery: an overview of its history, concepts, methods, and applications. PLoS Comput Biol. https://doi.org/10.1371/journal.pcbi.1004966

  34. Monod J (1977) Chance and necessity: essay on the natural philosophy of modern biology. Penguin Group, London

    Google Scholar 

  35. Fenton AW (2008) Allostery: an illustrated definition for the ‘second secret of life’. Trends Biochem Sci 33:420–425. https://doi.org/10.1016/j.tibs.2008.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giampiero Mei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Finazzi Agrò, A., Mei, G. (2021). Allostery: The Rebound of Proteins. In: Di Paola, L., Giuliani, A. (eds) Allostery. Methods in Molecular Biology, vol 2253. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1154-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1154-8_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1153-1

  • Online ISBN: 978-1-0716-1154-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics