Skip to main content

Tissue-Specific Ribosome Profiling in Drosophila

  • Protocol
  • First Online:
Ribosome Profiling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2252))

Abstract

Robust mechanisms exist that serve to dynamically regulate the translation of mRNA into proteins across heterogeneous tissues. These processes ensure timely generation of proteins in quantities that scale with the demands of specific cell types. Importantly, this translational regulation occurs with spatiotemporal precision and is capable of recalibration as conditions change. Aberrant regulation of translation contributes to and exacerbates a wide range of diseases. Although dynamic control of translation is an essential and fundamental process shared by organisms, specific tissues and cell types can be differentially impacted by circumstances that challenge and impair basal translation, highlighting the heterogeneous nature of translational regulation. To understand how translation is differentially regulated during changing environments and across specific cells and tissues, methods capable of profiling translation in specific tissues and cells are crucial. Here, we describe a method for profiling genome-wide translation in specific tissues or cell types in Drosophila melanogaster, in which we combine ribosome affinity purification with ribosome profiling to enable a simplified protocol for robust analysis of translation in specific tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kong J, Lasko P (2012) Translational control in cellular and developmental processes. Nat Rev Genet 13(6):383–394. https://doi.org/10.1038/nrg3184

    Article  CAS  PubMed  Google Scholar 

  2. Richter JD, Coller J (2015) Pausing on polyribosomes: make way for elongation in translational control. Cell 163(2):292–300. https://doi.org/10.1016/j.cell.2015.09.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Glisovic T, Bachorik JL, Yong J, Dreyfuss G (2008) RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett 582(14):1977–1986. https://doi.org/10.1016/j.febslet.2008.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Choe J, Lin S, Zhang W, Liu Q, Wang L, Ramirez-Moya J, Du P, Kim W, Tang S, Sliz P, Santisteban P, George RE, Richards WG, Wong KK, Locker N, Slack FJ, Gregory RI (2018) mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis. Nature 561(7724):556–560. https://doi.org/10.1038/s41586-018-0538-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, Pestova TV, Qian SB, Jaffrey SR (2015) 5′ UTR m(6)A promotes Cap-independent translation. Cell 163(4):999–1010. https://doi.org/10.1016/j.cell.2015.10.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Geiger T, Velic A, Macek B, Lundberg E, Kampf C, Nagaraj N, Uhlen M, Cox J, Mann M (2013) Initial quantitative proteomic map of 28 mouse tissues using the SILAC mouse. Mol Cell Proteomics 12(6):1709–1722. https://doi.org/10.1074/mcp.M112.024919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Richter JD, Bassell GJ, Klann E (2015) Dysregulation and restoration of translational homeostasis in fragile X syndrome. Nat Rev Neurosci 16(10):595–605. https://doi.org/10.1038/nrn4001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ludwig LS, Gazda HT, Eng JC, Eichhorn SW, Thiru P, Ghazvinian R, George TI, Gotlib JR, Beggs AH, Sieff CA, Lodish HF, Lander ES, Sankaran VG (2014) Altered translation of GATA1 in diamond-Blackfan anemia. Nat Med 20(7):748–753. https://doi.org/10.1038/nm.3557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Aspesi A, Ellis SR (2019) Rare ribosomopathies: insights into mechanisms of cancer. Nat Rev Cancer 19(4):228–238. https://doi.org/10.1038/s41568-019-0105-0

    Article  CAS  PubMed  Google Scholar 

  10. Bolze A, Mahlaoui N, Byun M, Turner B, Trede N, Ellis SR, Abhyankar A, Itan Y, Patin E, Brebner S, Sackstein P, Puel A, Picard C, Abel L, Quintana-Murci L, Faust SN, Williams AP, Baretto R, Duddridge M, Kini U, Pollard AJ, Gaud C, Frange P, Orbach D, Emile JF, Stephan JL, Sorensen R, Plebani A, Hammarstrom L, Conley ME, Selleri L, Casanova JL (2013) Ribosomal protein SA haploinsufficiency in humans with isolated congenital asplenia. Science 340(6135):976–978. https://doi.org/10.1126/science.1234864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Farley-Barnes KI, Ogawa LM, Baserga SJ (2019) Ribosomopathies: old concepts, new controversies. Trends Genet 35(10):754–767. https://doi.org/10.1016/j.tig.2019.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Khajuria RK, Munschauer M, Ulirsch JC, Fiorini C, Ludwig LS, McFarland SK, Abdulhay NJ, Specht H, Keshishian H, Mani DR, Jovanovic M, Ellis SR, Fulco CP, Engreitz JM, Schutz S, Lian J, Gripp KW, Weinberg OK, Pinkus GS, Gehrke L, Regev A, Lander ES, Gazda HT, Lee WY, Panse VG, Carr SA, Sankaran VG (2018) Ribosome levels selectively regulate translation and lineage commitment in human hematopoiesis. Cell 173(1):90–103. e119. https://doi.org/10.1016/j.cell.2018.02.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mills EW, Green R (2017) Ribosomopathies: there's strength in numbers. Science 358(6363). https://doi.org/10.1126/science.aan2755

  14. Tahmasebi S, Khoutorsky A, Mathews MB, Sonenberg N (2018) Translation deregulation in human disease. Nat Rev Mol Cell Biol 19(12):791–807. https://doi.org/10.1038/s41580-018-0034-x

    Article  CAS  PubMed  Google Scholar 

  15. Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324(5924):218–223. https://doi.org/10.1126/science.1168978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen X, Dickman D (2017) Development of a tissue-specific ribosome profiling approach in Drosophila enables genome-wide evaluation of translational adaptations. PLoS Genet 13(12):e1007117. https://doi.org/10.1371/journal.pgen.1007117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a National Institutes of Health grant (R01NS111414) to DD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dion Dickman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chen, X., Dickman, D. (2021). Tissue-Specific Ribosome Profiling in Drosophila. In: Labunskyy, V.M. (eds) Ribosome Profiling. Methods in Molecular Biology, vol 2252. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1150-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1150-0_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1149-4

  • Online ISBN: 978-1-0716-1150-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics