Skip to main content

Two-Photon Microscopy for Studying Reward Circuits of the Brain

  • Protocol
  • First Online:
The Brain Reward System

Part of the book series: Neuromethods ((NM,volume 165))

Abstract

The intrinsic ability of an animal to adapt its behavior and achieve reward is fundamental to survival. Reward-guided behaviors elicit distributed activity across the brain, recruiting cortical and subcortical brain structures such as the prefrontal cortex (PFC), striatum, ventral tegmental area (VTA), and others. Recent advances in techniques for optical physiology have been transformative in our understanding of the brain’s reward system. The ability to measure and manipulate the activity of specific neurons during reward-guided behavior is beginning to shed light on the functional roles for genetically and/or anatomically defined neuronal populations. Here, we first provide an overview of imaging techniques enabling such studies, with an emphasis on measuring cellular and subcellular neuronal signals with two-photon microscopy using genetically encoded sensors for calcium and neurotransmitters like dopamine. We then describe how recent studies have applied these techniques to subcortical (dopamine system and striatum) and cortical (prefrontal cortex) systems of reward processing. Although this chapter is not meant as an exhaustive review of the literature, we highlight areas of inquiries where novel optical tools have provided important new data that have been used to both test old hypotheses and generate novel insights about the circuit organization of the brain reward system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jun JJ, Steinmetz NA, Siegle JH, Denman DJ, Bauza M, Barbarits B, Lee AK, Anastassiou CA, Andrei A, Aydın Ç et al (2017) Fully integrated silicon probes for high-density recording of neural activity. Nature 551:232–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lima SQ, Hromadka T, Znamenskiy P, Zador AM (2009) PINP: a new method of tagging neuronal populations for identification during in vivo electrophysiological recording. PLoS One 4:e6099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kvitsiani D, Ranade S, Hangya B, Taniguchi H, Huang JZ, Kepecs A (2013) Distinct behavioural and network correlates of two interneuron types in prefrontal cortex. Nature 498:363–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Breton-Provencher V, Sur M (2019) Active control of arousal by a locus coeruleus GABAergic circuit. Nat Neurosci 22:218–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Allsop SA, Wichmann R, Mills F, Burgos-Robles A, Chang CJ, Felix-Ortiz AC, Vienne A, Beyeler A, Izadmehr EM, Glober G et al (2018) Corticoamygdala transfer of socially derived information gates observational learning. Cell 173:1329–1342. e18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kravitz AV, Owen SF, Kreitzer AC (2013) Optogenetic identification of striatal projection neuron subtypes during in vivo recordings. Brain Res 1511:21–32

    Article  CAS  PubMed  Google Scholar 

  7. Driscoll LN, Pettit NL, Minderer M, Chettih SN, Harvey CD (2017) Dynamic reorganization of neuronal activity patterns in parietal cortex. Cell 170:986–999. e16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Margolis DJ, Lütcke H, Schulz K, Haiss F, Weber B, Kügler S, Hasan MT, Helmchen F (2012) Reorganization of cortical population activity imaged throughout long-term sensory deprivation. Nat Neurosci 15:1539–1546

    Article  CAS  PubMed  Google Scholar 

  9. Rose T, Jaepel J, Hübener M, Bonhoeffer T (2016) Cell-specific restoration of stimulus preference after monocular deprivation in the visual cortex. Science 352:1319–1322

    Article  CAS  PubMed  Google Scholar 

  10. Madisen L, Garner AR, Shimaoka D, Chuong AS, Klapoetke NC, Li L, Van Der Bourg A, Niino Y, Egolf L, Monetti C et al (2015) Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron 85:942–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chatterjee S, Sullivan HA, Maclennan BJ, Xu R, Hou Y, Lavin TK, Lea NE, Michalski JE, Babcock KR, Dietrich S et al (2018) Nontoxic, double- deletion-mutant rabies viral vectors for retrograde targeting of projection neurons. Nat Neurosci 21:638–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. El-Boustani S, Ip JPK, Breton-Provencher V, Knott GW, Okuno H, Bito H, Sur M (2018) Locally coordinated synaptic plasticity of visual cortex neurons in vivo. Science 360:1349–1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Glickfeld LL, Andermann ML, Bonin V, Reid RC (2013) Cortico-cortical projections in mouse visual cortex are functionally target specific. Nat Neurosci 16:219–226

    Article  CAS  PubMed  Google Scholar 

  14. Broussard GJ, Liang Y, Fridman M, Unger EK, Meng G, Xiao X, Ji N, Petreanu L, Tian L (2018) In vivo measurement of afferent activity with axon- specific calcium imaging. Nat Neurosci 21:1272–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sun F, Zeng J, Jing M, Zhou J, Feng J, Owen SF, Luo Y, Li F, Wang H, Yamaguchi T et al (2018) A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell 174:481–496. e19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Roth RH, Zhang Y, Huganir RL (2017) Dynamic imaging of AMPA receptor trafficking in vitro and in vivo. Curr Opin Neurobiol 45:51–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hackley CR, Mazzoni EO, Blau J (2018) cAMPr: a single-wavelength fluorescent sensor for cyclic AMP. Sci Signal 11

    Google Scholar 

  18. Das S, Moon HC, Singer RH, Park HY (2018) A transgenic mouse for imaging activity-dependent dynamics of endogenous Arc mRNA in live neurons. Sci Adv 4:eaar3448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Akemann W, Sasaki M, Mutoh H, Imamura T, Honkura N, Knöpfel T (2013) Two-photon voltage imaging using a genetically encoded voltage indicator. Sci Rep 3:2231

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chamberland S, Yang HH, Pan MM, Evans SW, Guan S, Chavarha M, Yang Y, Salesse C, Wu H, Wu JC et al (2017) Fast two-photon imaging of subcellular voltage dynamics in neuronal tissue with genetically encoded indicators. elife:6

    Google Scholar 

  21. Tian L, Looger LL (2008) Genetically encoded fluorescent sensors for studying healthy and diseased nervous systems. Drug Discov Today Dis Models 5:27–35

    Article  PubMed  PubMed Central  Google Scholar 

  22. Abdelfattah AS, Kawashima T, Singh A, Novak O, Liu H, Shuai Y, Huang YC, Campagnola L, Seeman SC, Yu J et al (2019) Bright and photostable chemigenetic indicators for extended in vivo voltage imaging. Science 365:699–704

    Article  CAS  PubMed  Google Scholar 

  23. Adam Y, Kim JJ, Lou S, Zhao Y, Xie ME, Brinks D, Wu H, Mostajo-Radji MA, Kheifets S, Parot V et al (2019) Voltage imaging and optogenetics reveal behaviour-dependent changes in hippocampal dynamics. Nature 569:413–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Piatkevich KD, Bensussen S, Tseng HA, Shroff SN, Lopez-Huerta VG, Park D, Jung EE, Shemesh OA, Straub C, Gritton HJ et al (2019) Population imaging of neural activity in awake behaving mice. Nature 574:413–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  CAS  PubMed  Google Scholar 

  26. Grienberger C, Konnerth A (2012) Imaging calcium in neurons. Neuron 73:862–885

    Article  CAS  PubMed  Google Scholar 

  27. Dawitz J, Kroon T, Hjorth JJ, Meredith RM (2011) Functional calcium imaging in developing cortical networks. J Vis Exp (56):3550. https://doi.org/10.3791/3550

  28. Tian L, Hires SA, Mao T, Huber D, Chiappe ME, Chalasani SH, Petreanu L, Akerboom J, Mckinney SA, Schreiter ER et al (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6:875–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dana H, Sun Y, Mohar B, Hulse BK, Kerlin AM, Hasseman JP, Tsegaye G, Tsang A, Wong A, Patel R et al (2019) High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nat Methods 16:649–657

    Article  CAS  PubMed  Google Scholar 

  30. Jing M, Zhang P, Wang G, Feng J, Mesik L, Zeng J, Jiang H, Wang S, Looby JC, Guagliardo NA et al (2018) A genetically encoded fluorescent acetylcholine indicator for in vitro and in vivo studies. Nat Biotechnol 36:726–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Patriarchi T, Cho JR, Merten K, Howe MW, Marley A, Xiong WH, Folk RW, Broussard GJ, Liang R, Jang MJ et al (2018) Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360(6396):eaat4422. https://doi.org/10.1126/science.aat4422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Petilla Interneuron Nomenclature G, Ascoli GA, Alonso-Nanclares L, Anderson SA, Barrionuevo G, Benavides-Piccione R, Burkhalter A, Buzsaki G, Cauli B, Defelipe J et al (2008) Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci 9:557–568

    Article  CAS  Google Scholar 

  33. Tasic B, Yao Z, Graybuck LT, Smith KA, Nguyen TN, Bertagnolli D, Goldy J, Garren E, Economo MN, Viswanathan S et al (2018) Shared and distinct transcriptomic cell types across neocortical areas. Nature 563:72–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Donato F, Chowdhury A, Lahr M, Caroni P (2015) Early- and late-born parvalbumin basket cell subpopulations exhibiting distinct regulation and roles in learning. Neuron 85:770–786

    Article  CAS  PubMed  Google Scholar 

  35. Kelly SM, Raudales R, He M, Lee JH, Kim Y, Gibb LG, Wu P, Matho K, Osten P, Graybiel AM et al (2018) Radial glial lineage progression and differential intermediate progenitor amplification underlie striatal compartments and circuit organization. Neuron 99:345–361. e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bloem B, Huda R, Sur M, Graybiel AM (2017) Two-photon imaging in mice shows striosomes and matrix have overlapping but differential reinforcement-related responses. elife 6:e32353. https://doi.org/10.7554/eLife.32353

    Article  PubMed  PubMed Central  Google Scholar 

  37. Taniguchi H, He M, Wu P, Kim S, Paik R, Sugino K, Kvitsiani D, Fu Y, Lu J, Lin Y et al (2011) A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron 71:995–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Steinmetz NA, Buetfering C, Lecoq J, Lee CR, Peters AJ, Jacobs EAK, Coen P, Ollerenshaw DR, Valley MT, De Vries SEJ et al (2017) Aberrant cortical activity in multiple GCaMP6-expressing transgenic mouse lines. eNeuro 4(5):ENEURO.0207–ENEURO.0217. https://doi.org/10.1523/ENEURO.0207-17.2017

    Article  Google Scholar 

  39. Gong S, Doughty M, Harbaugh CR, Cummins A, Hatten ME, Heintz N, Gerfen CR (2007) Targeting Cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. J Neurosci 27:9817–9823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Callaway EM, Luo L (2015) Monosynaptic circuit tracing with glycoprotein-deleted rabies viruses. J Neurosci 35:8979–8985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Reardon TR, Murray AJ, Turi GF, Wirblich C, Croce KR, Schnell MJ, Jessell TM, Losonczy A (2016) Rabies virus CVS-N2c(ΔG) strain enhances retrograde synaptic transfer and neuronal viability. Neuron 89:711–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Del Rio D, Beucher B, Lavigne M, Wehbi A, Gonzalez Dopeso-Reyes I, Saggio I, Kremer EJ (2019) CAV-2 Vector development and gene transfer in the central and peripheral nervous systems. Front Mol Neurosci 12:71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tervo DG, Hwang BY, Viswanathan S, Gaj T, Lavzin M, Ritola KD, Lindo S, Michael S, Kuleshova E, Ojala D et al (2016) A Designer AAV variant permits efficient retrograde access to projection neurons. Neuron 92:372–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wall NR, Wickersham IR, Cetin A, De La Parra M, Callaway EM (2010) Monosynaptic circuit tracing in vivo through Cre-dependent targeting and complementation of modified rabies virus. Proc Natl Acad Sci 107:21848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huda R, Sipe GO, Adam E, Breton-Provencher V, Pho G, Gunter L, Wickersham IR, Sur M (2018) Bidirectional control of goal-oriented action selection by distinct prefrontal cortex circuits. bioRxiv:307009

    Google Scholar 

  46. Berke JD (2018) What does dopamine mean? Nat Neurosci 21:787–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lerner TN, Shilyansky C, Davidson TJ, Evans KE, Beier KT, Zalocusky KA, Crow AK, Malenka RC, Luo L, Tomer R et al (2015) Intact-brain analyses reveal distinct information carried by SNc dopamine subcircuits. Cell 162:635–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Beier KT, Steinberg EE, Deloach KE, Xie S, Miyamichi K, Schwarz L, Gao XJ, Kremer EJ, Malenka RC, Luo L (2015) Circuit architecture of VTA dopamine neurons revealed by systematic input–output mapping. Cell 162:622–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Beier KT, Gao XJ, Xie S, Deloach KE, Malenka RC, Luo L (2019) Topological organization of ventral tegmental area connectivity revealed by viral-genetic dissection of input-output relations. Cell Rep 26:159–167. e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Keiflin R, Janak PH (2015) Dopamine prediction errors in reward learning and addiction: from theory to neural circuitry. Neuron 88:247–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schultz W (1994) Behavior-related activity of primate dopamine neurons. Rev Neurol (Paris) 150:634–639

    CAS  Google Scholar 

  52. Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1–27

    Article  CAS  PubMed  Google Scholar 

  53. Zaghloul KA, Blanco JA, Weidemann CT, Mcgill K, Jaggi JL, Baltuch GH, Kahana MJ (2009) Human substantia nigra neurons encode unexpected financial rewards. Science 323:1496–1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. D'ardenne K, Mcclure SM, Nystrom LE, Cohen JD (2008) BOLD responses reflecting dopaminergic signals in the human ventral tegmental area. Science 319:1264–1267

    Article  CAS  PubMed  Google Scholar 

  55. Cohen JY, Haesler S, Vong L, Lowell BB, Uchida N (2012) Neuron-type- specific signals for reward and punishment in the ventral tegmental area. Nature 482:85–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bayer HM, Glimcher PW (2005) Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron 47:129–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Krigolson OE, Hassall CD, Handy TC (2014) How we learn to make decisions: rapid propagation of reinforcement learning prediction errors in humans. J Cogn Neurosci 26:635–644

    Article  PubMed  Google Scholar 

  58. Eshel N, Tian J, Bukwich M, Uchida N (2016) Dopamine neurons share common response function for reward prediction error. Nat Neurosci 19:479–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Matsumoto M, Hikosaka O (2009) Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature 459:837–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pan WX, Schmidt R, Wickens JR, Hyland BI (2005) Dopamine cells respond to predicted events during classical conditioning: evidence for eligibility traces in the reward-learning network. J Neurosci 25:6235–6242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Menegas W, Akiti K, Amo R, Uchida N, Watabe-Uchida M (2018) Dopamine neurons projecting to the posterior striatum reinforce avoidance of threatening stimuli. Nat Neurosci 21:1421–1430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fiorillo CD (2013) Two dimensions of value: dopamine neurons represent reward but not aversiveness. Science 341:546–549

    Article  CAS  PubMed  Google Scholar 

  63. Coddington LT, Dudman JT (2019) Learning from action: reconsidering movement signaling in midbrain dopamine neuron activity. Neuron 104:63–77

    Article  CAS  PubMed  Google Scholar 

  64. Howe MW, Dombeck DA (2016) Rapid signalling in distinct dopaminergic axons during locomotion and reward. Nature 535:505–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nasser HM, Calu DJ, Schoenbaum G, Sharpe MJ (2017) The dopamine prediction error: contributions to associative models of reward learning. Front Psychol 8:244

    Article  PubMed  PubMed Central  Google Scholar 

  66. Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275:1593–1599

    Article  CAS  PubMed  Google Scholar 

  67. Waelti P, Dickinson A, Schultz W (2001) Dopamine responses comply with basic assumptions of formal learning theory. Nature 412:43–48

    Article  CAS  PubMed  Google Scholar 

  68. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond- timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    Article  CAS  PubMed  Google Scholar 

  69. Zhang F, Tsai HC, Airan RD, Stuber GD, Adamantidis AR, De Lecea L, Bonci A, Deisseroth K (2015) Optogenetics in freely moving mammals: dopamine and reward. Cold Spring Harb Protoc 2015:715–724

    Article  PubMed  Google Scholar 

  70. Steinberg EE, Keiflin R, Boivin JR, Witten IB, Deisseroth K, Janak PH (2013) A causal link between prediction errors, dopamine neurons and learning. Nat Neurosci 16:966–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rescorla RA, Holland PC (1982) Behavioral studies of associative learning in animals. Annu Rev Psychol 33:265–308

    Article  Google Scholar 

  72. Hamid AA, Pettibone JR, Mabrouk OS, Hetrick VL, Schmidt R, Vander Weele CM, Kennedy RT, Aragona BJ, Berke JD (2016) Mesolimbic dopamine signals the value of work. Nat Neurosci 19:117–126

    Article  CAS  PubMed  Google Scholar 

  73. Kim KM, Baratta MV, Yang A, Lee D, Boyden ES, Fiorillo CD (2012) Optogenetic mimicry of the transient activation of dopamine neurons by natural reward is sufficient for operant reinforcement. PLoS One 7:e33612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lak A, Okun M, Moss MM, Gurnani H, Farrell K, Wells MJ, Reddy CB, Kepecs A, Harris KD, Carandini M (2020) Dopaminergic and prefrontal basis of learning from sensory confidence and reward value. Neuron 105:700–711. e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Stauffer WR, Lak A, Yang A, Borel M, Paulsen O, Boyden ES, Schultz W (2016) Dopamine neuron-specific optogenetic stimulation in rhesus macaques. Cell 166:1564–1571. e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chang CY, Esber GR, Marrero-Garcia Y, Yau HJ, Bonci A, Schoenbaum G (2016) Brief optogenetic inhibition of dopamine neurons mimics endogenous negative reward prediction errors. Nat Neurosci 19:111–116

    Article  CAS  PubMed  Google Scholar 

  77. Saunders BT, Richard JM, Margolis EB, Janak PH (2018) Dopamine neurons create Pavlovian conditioned stimuli with circuit-defined motivational properties. Nat Neurosci 21:1072–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yttri EA, Dudman JT (2016) Opponent and bidirectional control of movement velocity in the basal ganglia. Nature 533:402–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tai LH, Lee AM, Benavidez N, Bonci A, Wilbrecht L (2012) Transient stimulation of distinct subpopulations of striatal neurons mimics changes in action value. Nat Neurosci 15:1281–1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wickens JR, Horvitz JC, Costa RM, Killcross S (2007) Dopaminergic mechanisms in actions and habits. J Neurosci 27:8181–8183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Palmiter RD (2008) Dopamine signaling in the dorsal striatum is essential for motivated behaviors: lessons from dopamine-deficient mice. Ann N Y Acad Sci 1129:35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. German DC, Manaye K, Smith WK, Woodward DJ, Saper CB (1989) Midbrain dopaminergic cell loss in Parkinson’s disease: computer visualization. Ann Neurol 26:507–514

    Article  CAS  PubMed  Google Scholar 

  83. Chinaglia G, Alvarez FJ, Probst A, Palacios JM (1992) Mesostriatal and mesolimbic dopamine uptake binding sites are reduced in Parkinson’s disease and progressive supranuclear palsy: a quantitative autoradiographic study using [3H]mazindol. Neuroscience 49:317–327

    Article  CAS  PubMed  Google Scholar 

  84. Salamone JD, Correa M (2012) The mysterious motivational functions of mesolimbic dopamine. Neuron 76:470–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dodson PD, Dreyer JK, Jennings KA, Syed ECJ, Wade-Martins R, Cragg SJ, Bolam JP, Magill PJ (2016) Representation of spontaneous movement by dopaminergic neurons is cell-type selective and disrupted in parkinsonism. Proc Natl Acad Sci 113:E2180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Da Silva JA, Tecuapetla F, Paixão V, Costa RM (2018) Dopamine neuron activity before action initiation gates and invigorates future movements. Nature 554:244–248

    Article  CAS  PubMed  Google Scholar 

  87. Syed EC, Grima LL, Magill PJ, Bogacz R, Brown P, Walton ME (2016) Action initiation shapes mesolimbic dopamine encoding of future rewards. Nat Neurosci 19:34–36

    Article  CAS  PubMed  Google Scholar 

  88. Wassum KM, Ostlund SB, Maidment NT (2012) Phasic mesolimbic dopamine signaling precedes and predicts performance of a self-initiated action sequence task. Biol Psychiatry 71:846–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Howe MW, Tierney PL, Sandberg SG, Phillips PE, Graybiel AM (2013) Prolonged dopamine signalling in striatum signals proximity and value of distant rewards. Nature 500:575–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Engelhard B, Finkelstein J, Cox J, Fleming W, Jang HJ, Ornelas S, Koay SA, Thiberge SY, Daw ND, Tank DW et al (2019) Specialized coding of sensory, motor and cognitive variables in VTA dopamine neurons. Nature 570:509–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Guo Q, Zhou J, Feng Q, Lin R, Gong H, Luo Q, Zeng S, Luo M, Fu L (2015) Multi-channel fiber photometry for population neuronal activity recording. Biomed Opt Express 6:3919–3931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gunaydin LA, Grosenick L, Finkelstein JC, Kauvar IV, Fenno LE, Adhikari A, Lammel S, Mirzabekov JJ, Airan RD, Zalocusky KA et al (2014) Natural neural projection dynamics underlying social behavior. Cell 157:1535–1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Parker NF, Cameron CM, Taliaferro JP, Lee J, Choi JY, Davidson TJ, Daw ND, Witten IB (2016) Reward and choice encoding in terminals of midbrain dopamine neurons depends on striatal target. Nat Neurosci 19:845–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhou FM, Liang Y, Dani JA (2001) Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nat Neurosci 4:1224–1229

    Article  CAS  PubMed  Google Scholar 

  95. Sulzer D, Cragg SJ, Rice ME (2016) Striatal dopamine neurotransmission: regulation of release and uptake. Basal Ganglia 6:123–148

    Article  PubMed  PubMed Central  Google Scholar 

  96. Cover KK, Gyawali U, Kerkhoff WG, Patton MH, Mu C, White MG, Marquardt AE, Roberts BM, Cheer JF, Mathur BN (2019) Activation of the rostral intralaminar thalamus drives reinforcement through striatal dopamine release. Cell Rep 26:1389–1398. e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Threlfell S, Lalic T, Platt NJ, Jennings KA, Deisseroth K, Cragg SJ (2012) Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons. Neuron 75:58–64

    Article  CAS  PubMed  Google Scholar 

  98. Mohebi A, Pettibone JR, Hamid AA, Wong JT, Vinson LT, Patriarchi T, Tian L, Kennedy RT, Berke JD (2019) Dissociable dopamine dynamics for learning and motivation. Nature 570:65–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Crittenden JR, Tillberg PW, Riad MH, Shima Y, Gerfen CR, Curry J, Housman DE, Nelson SB, Boyden ES, Graybiel AM (2016) Striosome- dendron bouquets highlight a unique striatonigral circuit targeting dopamine- containing neurons. Proc Natl Acad Sci U S A 113:11318–11323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mcgregor MM, Mckinsey GL, Girasole AE, Bair-Marshall CJ, Rubenstein JLR, Nelson AB (2019) Functionally distinct connectivity of developmentally targeted striosome neurons. Cell Rep 29:1419–1428. e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Graybiel AM, Ragsdale CW Jr (1978) Histochemically distinct compartments in the striatum of human, monkeys, and cat demonstrated by acetylthiocholinesterase staining. Proc Natl Acad Sci U S A 75:5723–5726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kim CK, Ye L, Jennings JH, Pichamoorthy N, Tang DD, Yoo A-CW, Ramakrishnan C, Deisseroth K (2017) Molecular and circuit-dynamical identification of top-down neural mechanisms for restraint of reward seeking. Cell 170:1013–1027. e14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ferenczi EA, Zalocusky KA, Liston C, Grosenick L, Warden MR, Amatya D, Katovich K, Mehta H, Patenaude B, Ramakrishnan C et al (2016) Prefrontal cortical regulation of brainwide circuit dynamics and reward-related behavior. Science 351:aac9698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Otis JM, Namboodiri VMK, Matan AM, Voets ES, Mohorn EP, Kosyk O, Mchenry JA, Robinson JE, Resendez SL, Rossi MA et al (2017) Prefrontal cortex output circuits guide reward seeking through divergent cue encoding. Nature 543:103–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

RH is supported by funds from the National Institute of Mental Health (R00 MH112855). LAI is supported by the Hearst Foundation Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rafiq Huda or Leena Ali Ibrahim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Huda, R., Ibrahim, L.A., Bloem, B. (2021). Two-Photon Microscopy for Studying Reward Circuits of the Brain. In: Fakhoury, M. (eds) The Brain Reward System. Neuromethods, vol 165. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1146-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1146-3_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1145-6

  • Online ISBN: 978-1-0716-1146-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics