Skip to main content

Detection of Plasma Membrane Phosphoinositide Dynamics Using Genetically Encoded Fluorescent Protein Probes

  • Protocol
  • First Online:
Phosphoinositides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2251))

  • 1243 Accesses

Abstract

The dynamic phosphorylation of phosphatidylinositol produces seven distinct but interconvertible phosphatidylinositol phosphates (PIPs). Each PIP exhibits specific enrichment in a subset of membrane compartments as a result of dynamic phosphorylation and dephosphorylation by lipid kinases and phosphatases, and/or by vesicle-mediated transport. Several PIPs are found within the plasma membrane, such as phosphatidylinositol-4-phosphate [PI(4)P], phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2], phosphatidylinositol-3,4-bisphosphate [PI(3,4)P2], and phosphatidylinositol-3,4,5-trisphosphate (PIP3), and these control many aspects of cell physiology, including receptor signaling and membrane traffic. As a result, measurement of the cell surface abundance of these PIPs is a valuable resource to allow understanding of the regulation and function of these cell surface lipids. Here, we describe methods based on quantification of the localization of genetically encoded fluorescent PIP probes to the cell surface by either spinning disc confocal microscopy or total internal reflection fluorescence microscopy that allow detection of changes in cell surface levels of PI(4,5)P2, PI(3,4)P2, and PIP3. These methods can also be applied to the measurement of other PIPs or lipid species at the cell surface, and thus represent a useful resource for the study of the cell biology of PIPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Choy CH, Han BK, Botelho RJ (2017) Phosphoinositide diversity, distribution, and effector function: stepping out of the box. BioEssays 39

    Google Scholar 

  2. Balla T (2013) Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev 93:1019–1137. https://doi.org/10.1152/physrev.00028.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hammond GRV, Burke JE (2020) Novel roles of phosphoinositides in signaling, lipid transport, and disease. Curr Opin Cell Biol 63:57–67

    Article  CAS  Google Scholar 

  4. Schink KO, Raiborg C, Stenmark H (2013) Phosphatidylinositol 3-phosphate, a lipid that regulates membrane dynamics, protein sorting and cell signalling. BioEssays 35:900–912. https://doi.org/10.1002/bies.201300064

    Article  CAS  PubMed  Google Scholar 

  5. Mccartney AJ, Zhang Y, Weisman LS (2014) Phosphatidylinositol 3,5-bisphosphate: low abundance, high significance. BioEssays 36:52–64

    Article  CAS  Google Scholar 

  6. De Matteis MA, Wilson C, D’Angelo G (2013) Phosphatidylinositol-4-phosphate: the Golgi and beyond. BioEssays 35:612–622. https://doi.org/10.1002/bies.201200180

    Article  CAS  PubMed  Google Scholar 

  7. Hawkins PT, Stephens LR (2015) PI3K signalling in inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 1851:882–897

    Article  CAS  Google Scholar 

  8. Hirsch E, Gulluni F, Martini M (2020) Phosphoinositides in cell proliferation and metabolism. Adv Biol Regul 75:100693. https://doi.org/10.1016/j.jbior.2020.100693

    Article  CAS  PubMed  Google Scholar 

  9. Han BK, Emr SD (2011) Phosphoinositide [PI(3,5)P2] lipiddependent regulation of the general transcriptional regulator Tup1. Genes Dev 25:984–995. https://doi.org/10.1101/gad.1998611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stijf-Bultsma Y, Sommer L, Tauber M et al (2015) The basal transcription complex component TAF3 transduces changes in nuclear phosphoinositides into transcriptional output. Mol Cell 58:453–467. https://doi.org/10.1016/j.molcel.2015.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mesmin B, Antonny B (2016) The counterflow transport of sterols and PI4P. Biochim Biophys Acta 1861:940–951. https://doi.org/10.1016/j.bbalip.2016.02.024

    Article  CAS  PubMed  Google Scholar 

  12. Mesmin B, Bigay J, Moser von Filseck J et al (2013) A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP. Cell 155:830–843. https://doi.org/10.1016/j.cell.2013.09.056

    Article  CAS  PubMed  Google Scholar 

  13. Bousova K, Jirku M, Bumba L et al (2015) PIP2 and PIP3 interact with N-terminus region of TRPM4 channel. Biophys Chem 205:24–32. https://doi.org/10.1016/j.bpc.2015.06.004

    Article  CAS  PubMed  Google Scholar 

  14. Dong X, Shen D, Wang X et al (2010) PI(3,5)P(2) controls membrane trafficking by direct activation of mucolipin Ca(2+) release channels in the endolysosome. Nat Commun 1:38. https://doi.org/10.1038/ncomms1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hansen SB (2015) Lipid agonism: the PIP2 paradigm of ligand-gated ion channels. Biochim Biophys Acta Mol Cell Biol Lipids 1851:620–628

    Article  CAS  Google Scholar 

  16. Huang CL, Feng SY, Hilgemann DW (1998) Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by G beta gamma. Nature 391:803–806. https://doi.org/10.1038/35882

    Article  CAS  PubMed  Google Scholar 

  17. Dickson EJ, Hille B (2019) Understanding phosphoinositides: rare, dynamic, and essential membrane phospholipids. Biochem J 476:1–23

    Article  CAS  Google Scholar 

  18. Behnia R, Munro S (2005) Organelle identity and the signposts for membrane traffic. Nature 438:597–604. https://doi.org/10.1038/nature04397

    Article  CAS  PubMed  Google Scholar 

  19. Hammond GRV, Machner MP, Balla T (2014) A novel probe for phosphatidylinositol 4-phosphate reveals multiple pools beyond the Golgi. J Cell Biol 205:113–126. https://doi.org/10.1083/jcb.201312072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Du X, Zhou L, Aw YC et al (2020) ORP5 localizes to ER-lipid droplet contacts and regulates the level of PI(4)P on lipid droplets. J Cell Biol 219:e201905162. https://doi.org/10.1083/jcb.201905162

    Article  CAS  PubMed  Google Scholar 

  21. Quon E, Sere YY, Chauhan N et al (2018) Endoplasmic reticulum-plasma membrane contact sites integrate sterol and phospholipid regulation. PLoS Biol 16:e2003864. https://doi.org/10.1371/journal.pbio.2003864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sridhar S, Patel B, Aphkhazava D et al (2013) The lipid kinase PI4KIIIβ preserves lysosomal identity. EMBO J 32:324–339. https://doi.org/10.1038/emboj.2012.341

    Article  CAS  PubMed  Google Scholar 

  23. Rong Y, Liu M, Ma L et al (2012) Clathrin and phosphatidylinositol-4,5-bisphosphate regulate autophagic lysosome reformation. Nat Cell Biol 14:924

    Article  CAS  Google Scholar 

  24. Tan X, Thapa N, Choi S, Anderson RA (2015) Emerging roles of PtdIns(4,5)P2 - beyond the plasma membrane. J Cell Sci 128:4047–4056

    Article  CAS  Google Scholar 

  25. Choi S, Chen M, Cryns VL, Anderson RA (2019) A nuclear phosphoinositide kinase complex regulates p53. Nat Cell Biol 21:462–475. https://doi.org/10.1038/s41556-019-0297-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dong R, Saheki Y, Swarup S et al (2016) Endosome-ER contacts control actin nucleation and Retromer function through VAP-dependent regulation of PI4P. Cell 166:408–423. https://doi.org/10.1016/j.cell.2016.06.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hammond GRV, Balla T (2015) Polyphosphoinositide binding domains: key to inositol lipid biology. Biochim Biophys Acta Mol Cell Biol Lipids 1851:746–758

    Article  CAS  Google Scholar 

  28. Várnai P, Gulyás GG, Tóth DJ et al (2016) Quantifying lipid changes in various membrane compartments using lipid binding protein domains. Cell Calcium 64:72–82. https://doi.org/10.1016/j.ceca.2016.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Idevall-Hagren O, De Camilli P (2015) Detection and manipulation of phosphoinositides. Biochim Biophys Acta Mol Cell Biol Lipids 1851:736–745

    Article  CAS  Google Scholar 

  30. Wills RC, Goulden BD, Hammond GRV (2018) Genetically encoded lipid biosensors. Mol Biol Cell 29:1526–1532. https://doi.org/10.1091/mbc.E17-12-0738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stauffer TP, Ahn S, Meyer T (1998) Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P2 concentration monitored in living cells. Curr Biol 8:343–346. https://doi.org/10.1016/S0960-9822(98)70135-6

    Article  CAS  PubMed  Google Scholar 

  32. Lemmon MA, Ferguson KM, O’Brien R et al (1995) Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. Proc Natl Acad Sci U S A 92:10472–10476. https://doi.org/10.1073/pnas.92.23.10472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Várnai P, Balla T (1998) Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to myo-[3H]inositol-labeled phosphoinositide pools. J Cell Biol 143:501–510

    Article  Google Scholar 

  34. Santagata S (2001) G-protein signaling through tubby proteins. Science 292:2041–2050. https://doi.org/10.1126/science.1061233

    Article  CAS  PubMed  Google Scholar 

  35. Field SJ, Madson N, Kerr ML et al (2005) PtdIns(4,5)P2 functions at the cleavage furrow during cytokinesis. Curr Biol 15:1407–1412. https://doi.org/10.1016/j.cub.2005.06.059

    Article  CAS  PubMed  Google Scholar 

  36. Servant G, Weiner OD, Herzmark P et al (2000) Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science 287:1037–1040. https://doi.org/10.1126/science.287.5455.1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Watton SJ, Downward J (1999) Akt/PKB localisation and 3′ phosphoinositide generation at sites of epithelial cell-matrix and cell-cell interaction. Curr Biol 9:433–436. https://doi.org/10.1016/s0960-9822(99)80192-4

    Article  CAS  PubMed  Google Scholar 

  38. Manna D, Albanese A, Wei SP, Cho W (2007) Mechanistic basis of differential cellular responses of phosphatidylinositol 3,4-bisphosphate- and phosphatidylinositol 3,4,5-trisphosphate-binding pleckstrin homology domains. J Biol Chem 282:32093–32105. https://doi.org/10.1074/jbc.M703517200

    Article  CAS  PubMed  Google Scholar 

  39. Várnai P, Rother KI, Balla T (1999) Phosphatidylinositol 3-kinase-dependent membrane association of the Bruton’s tyrosine kinase pleckstrin homology domain visualized in single living cells. J Biol Chem 274:10983–10989. https://doi.org/10.1074/jbc.274.16.10983

    Article  PubMed  Google Scholar 

  40. Lu Q, Yu J, Yan J et al (2011) Structural basis of the myosin X PH1 N-PH2-PH1 C tandem as a specific and acute cellular PI(3,4,5)P 3 sensor. Mol Biol Cell 22:4268–4278. https://doi.org/10.1091/mbc.E11-04-0354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Goulden BD, Pacheco J, Dull A et al (2018) A high-avidity biosensor reveals plasma membrane PI(3,4)P2 is predominantly a class I PI3K signaling product. J Cell Biol 218(3):1066–1079. https://doi.org/10.1083/JCB.201809026

    Article  PubMed  Google Scholar 

  42. Sugiyama MG, Fairn GD, Antonescu CN (2019) Akt-ing up just about everywhere: compartment-specific Akt activation and function in receptor tyrosine kinase signaling. Front Cell Dev Biol 7:70. https://doi.org/10.3389/FCELL.2019.00070

    Article  PubMed  PubMed Central  Google Scholar 

  43. Garay C, Judge G, Lucarelli S et al (2015) Epidermal growth factor-stimulated Akt phosphorylation requires clathrin or ErbB2 but not receptor endocytosis. Mol Biol Cell 26:3504–3519. https://doi.org/10.1091/mbc.E14-09-1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Delos Santos R, Bautista S, Bone L et al (2017) Selective control of clathrin- mediated endocytosis and clathrin-dependent signaling by phospholipase C and Ca2+ signals. Mol Biol Cell 28:2802–2818

    Article  Google Scholar 

  45. Botelho RJ, Teruel M, Dierckman R et al (2000) Localized biphasic changes in phosphatidylinositol-4,5-bisphosphate at sites of phagocytosis. J Cell Biol 151:1353–1368

    Article  CAS  Google Scholar 

  46. Fish KN (2009) Total internal reflection fluorescence (TIRF) microscopy. Curr Protoc Cytom Chapter 12:Unit12.18. https://doi.org/10.1002/0471142956.cy1218s50

  47. Mattheyses AL, Simon SM, Rappoport JZ (2010) Imaging with total internal reflection fluorescence microscopy for the cell biologist. J Cell Sci 123:3621–3628. https://doi.org/10.1242/jcs.056218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Madugula V, Lu L (2016) A ternary complex comprising transportin1, Rab8 and the ciliary targeting signal directs proteins to ciliary membranes. J Cell Sci 129:3922–3934. https://doi.org/10.1242/jcs.194019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Legler DF, Doucey MA, Schneider P et al (2005) Differential insertion of GPI-anchored GFPs into lipid rafts of live cells. FASEB J 19:73–75. https://doi.org/10.1096/fj.03-1338fje

    Article  CAS  PubMed  Google Scholar 

  50. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  Google Scholar 

  51. Fekri F, Abousawan J, Bautista S et al (2019) Targeted enhancement of flotillin-dependent endocytosis augments cellular uptake and impact of cytotoxic drugs. Sci Rep 9:17768. https://doi.org/10.1038/s41598-019-54062-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fischer AH, Jacobson KA, Rose J, Zeller R (2008) Preparation of slides and coverslips for microscopy. CSH Protoc 2008:pdb.prot4988. https://doi.org/10.1101/PDB.PROT4988

    Article  PubMed  Google Scholar 

  53. Lucarelli S, Delos Santos RC, Antonescu CN (2017) Measurement of epidermal growth factor receptor-derived signals within plasma membrane clathrin structures. Methods Mol Biol 1652:191–225

    Article  CAS  Google Scholar 

  54. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costin N. Antonescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cabral-Dias, R., Awadeh, Y., Botelho, R.J., Antonescu, C.N. (2021). Detection of Plasma Membrane Phosphoinositide Dynamics Using Genetically Encoded Fluorescent Protein Probes. In: Botelho, R.J. (eds) Phosphoinositides. Methods in Molecular Biology, vol 2251. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1142-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1142-5_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1141-8

  • Online ISBN: 978-1-0716-1142-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics