Skip to main content

Fluorogenic XY-69 in Lipid Vesicles for Measuring Activity of Phospholipase C Isozymes

  • Protocol
  • First Online:
Phosphoinositides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2251))

Abstract

Mammalian phospholipase C (PLC) isozymes are major signaling nodes that regulate a wide range of cellular processes. Dysregulation of PLC activity has been associated with a growing list of human diseases such as cancer and Alzheimer’s disease. However, methods to directly and continuously monitor PLC activity at membranes with high sensitivity and throughput are still lacking. We have developed XY-69, a fluorogenic PIP2 analog, which can be efficiently hydrolyzed by PLC isozymes either in solution or at membranes. Here, we describe the optimized assay conditions and protocol to measure the activity of PLC-γ1 (D1165H) with XY-69 in lipid vesicles. The described protocol also applies to other PLC isozymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harden TK, Sondek J (2006) Regulation of phospholipase C isozymes by Ras superfamily GTPases. Annu Rev Pharmacol Toxicol 46:355–379. https://doi.org/10.1146/annurev.pharmtox.46.120604.141223

    Article  CAS  PubMed  Google Scholar 

  2. Hicks SN, Jezyk MR, Gershburg S et al (2008) General and versatile autoinhibition of PLC isozymes. Mol Cell 31:383–394. https://doi.org/10.1016/j.molcel.2008.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hajicek N, Charpentier TH, Rush JR et al (2013) Autoinhibition and phosphorylation-induced activation of phospholipase C-γ isozymes. Biochemistry 52:4810–4819. https://doi.org/10.1021/bi400433b

  4. Rhee SG (2001) Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem 70:281–312. https://doi.org/10.1146/annurev.biochem.70.1.281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Balla T (2013) Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev 93:1019–1137. https://doi.org/10.1152/physrev.00028.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Koss H, Bunney TD, Behjati S et al (2014) Dysfunction of phospholipase C-γ in immune disorders and cancer. Trends Biochem Sci 39:603–611. https://doi.org/10.1016/j.tibs.2014.09.004

  7. Martins M, McCarthy A, Baxendale R et al (2014) Tumor suppressor role of phospholipase C-ε in Ras-triggered cancers. Proc Natl Acad Sci U S A 111:4239–4244. https://doi.org/10.1073/pnas.1311500111

  8. Kataoka K, Nagata Y, Kitanaka A et al (2015) Integrated molecular analysis of adult T cell leukemia/lymphoma. Nat Genet 47:1304–1315. https://doi.org/10.1038/ng.3415

    Article  CAS  PubMed  Google Scholar 

  9. Sims R, van der Lee SJ, Naj AC et al (2017) Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat Genet 49:1373–1384. https://doi.org/10.1038/ng.3916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Magno L, Lessard CB, Martins M et al (2019) Alzheimer's disease phospholipase C-gamma-2 (PLCG2) protective variant is a functional hypermorph. Alzheimers Res Ther 11:16. https://doi.org/10.1186/s13195-019-0469-0

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cremasco V, Graham DB, Novack DV et al (2008) Vav/phospholipase C-γ2-mediated control of a neutrophil-dependent murine model of rheumatoid arthritis. Arthritis Rheum 58:2712–2722. https://doi.org/10.1002/art.23757

  12. Afroz S, Giddaluru J, Vishwakarma S et al (2017) A comprehensive gene expression meta-analysis identifies novel immune signatures in rheumatoid arthritis patients. Front Immunol 8:74. https://doi.org/10.3389/fimmu.2017.00074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Waldo GL, Ricks TK, Hicks SN et al (2010) Kinetic scaffolding mediated by a phospholipase C-β and Gq signaling complex. Science 330:974–980. https://doi.org/10.1126/science.1193438

  14. Smrcka AV, Hepler JR, Brown KO et al (1991) Regulation of polyphosphoinositide-specific phospholipase C activity by purified Gq. Science 251:804–807. https://doi.org/10.1126/science.1846707

    Article  CAS  PubMed  Google Scholar 

  15. Seifert JP, Snyder JT, Sondek J et al (2006) Direct activation of purified phospholipase C-ε by RhoA studied in reconstituted phospholipid vesicles. Methods Enzymol 406:260–271. https://doi.org/10.1016/S0076-6879(06)06019-8

  16. Litosch I (2000) Regulation of phospholipase C-β1 activity by phosphatidic acid. Biochemistry 39:7736–7743. https://doi.org/10.1021/bi000022y

  17. Liu Y, Mihai C, Kubiak R et al (2007) Phosphorothiolate analogues of phosphatidylinositos as assay substrates for phospholipase C. Chembiochem 8:1430–1439. https://doi.org/10.1002/cbic.200700061

    Article  CAS  PubMed  Google Scholar 

  18. Rukavishnikov AV, Zaikova TO, Birrell GB et al (1999) Synthesis of a new fluorogenic substrate for the continuous assay of mammalian phosphoinositide-specific phospholipase C. Bioorg Med Chem Lett 9:1133–1136. https://doi.org/10.1016/s0960-894x(99)00166-3

    Article  CAS  PubMed  Google Scholar 

  19. Zaikova TO, Rukavishnikov AV, Birrell GB et al (2001) Synthesis of fluorogenic substrates for continuous assay of phosphatidylinositol-specific phospholipase C. Bioconjug Chem 12:307–313. https://doi.org/10.1021/bc0001138

    Article  CAS  PubMed  Google Scholar 

  20. Rose TM, Prestwich GD (2006) Synthesis and evaluation of fluorogenic substrates for phospholipase D and phospholipase C. Org Lett 8:2575–2578. https://doi.org/10.1021/ol060773d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huang W, Hicks SN, Sondek J et al (2011) A fluorogenic, small molecule reporter for mammalian phospholipase C isozymes. ACS Chem Biol 6:223–228. https://doi.org/10.1021/cb100308n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang WG, Wang XY, Endo-Streeter S et al (2018) A membrane-associated, fluorogenic reporter for mammalian phospholipase C isozymes. J Biol Chem 293:1728–1735. https://doi.org/10.1074/jbc.RA117.000926

    Article  CAS  PubMed  Google Scholar 

  23. Waldo GL, Boyer JL, Morris AJ et al (1991) Purification of an AlF4- and G-protein βγ-subunit-regulated phospholipase C-activating protein. J Biol Chem 266:14217–14225

    Google Scholar 

  24. Harden TK, Morris AJ, Waldo GL et al (1991) Avian G-protein-regulated phospholipase C. Biochem Soc Trans 19:342–346. https://doi.org/10.1042/bst0190342

    Article  CAS  PubMed  Google Scholar 

  25. Hajicek N, Keith NC, Siraliev-Perez E et al (2019) Structural basis for the activation of PLC-γ isozymes by phosphorylation and cancer-associated mutations. Elife 8:e51700. https://doi.org/10.7554/eLife.51700

  26. Clapham DE (2007) Calcium signaling. Cell 131:1047–1058. https://doi.org/10.1016/j.cell.2007.11.028

    Article  CAS  PubMed  Google Scholar 

  27. Wehbi H, Feng J, Kolbeck J et al (2003) Investigating the interfacial binding of bacterial phosphatidylinositol-specific phospholipase C. Biochemistry 42:9374–9382. https://doi.org/10.1021/bi034195+

    Article  CAS  PubMed  Google Scholar 

  28. Uekama N, Aoki T, Maruoka T et al (2009) Influence of membrane curvature on the structure of the membrane-associated pleckstrin homology domain of phospholipase C-δ1. Biochim Biophys Acta 1788:2575–2583. https://doi.org/10.1016/j.bbamem.2009.10.009

  29. Ahyayauch H, Villar AV, Alonso A et al (2005) Modulation of PI-specific phospholipase C by membrane curvature and molecular order. Biochemistry 44:11592–11600. https://doi.org/10.1021/bi050715k

    Article  CAS  PubMed  Google Scholar 

  30. Burack WR, Biltonen RL (1994) Lipid bilayer heterogeneities and modulation of phospholipase A2 activity. Chem Phys Lipids 73:209–222. https://doi.org/10.1016/0009-3084(94)90182-1

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (GM057391 to J. S. and CA177993 to Q. Z.) and the North Carolina Biotechnology Center (TEG-2018-1505 to Q. Z.). We thank Dr. Xiaoyang Wang for providing XY-69 and the Center for Integrative Chemical Biology and Drug Discovery (CICBDD) at the UNC Eshelman School of Pharmacy for the access to a microplate reader.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qisheng Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Carr, A.J., Siraliev-Perez, E., Huang, W., Sondek, J., Zhang, Q. (2021). Fluorogenic XY-69 in Lipid Vesicles for Measuring Activity of Phospholipase C Isozymes. In: Botelho, R.J. (eds) Phosphoinositides. Methods in Molecular Biology, vol 2251. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1142-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1142-5_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1141-8

  • Online ISBN: 978-1-0716-1142-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics