Skip to main content

Evaluation of Diagnostic Tests

  • Protocol
  • First Online:
Clinical Epidemiology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2249))

Abstract

As technology advances, diagnostic tests continue to improve and each year, we are presented with new alternatives to standard procedures. Given the plethora of diagnostic alternatives, diagnostic tests must be evaluated to determine their place in the diagnostic armamentarium. The first step involves determining the accuracy of the test, including the sensitivity and specificity, positive and negative predictive values, likelihood ratios for positive and negative tests, and receiver operating characteristic (ROC) curves. The role of the test in a diagnostic pathway has then to be determined, following which the effect on patient outcome should be examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ehrenstein B, Pongratz G, Fleck M, Hartung W (2018) The ability of rheumatologists blinded to prior workup to diagnose rheumatoid arthritis only by clinical assessment: a cross-sectional study. Rheumatology 57:1592–1601

    Article  PubMed  Google Scholar 

  2. Reiman MP, Reiman CK, Decary S (2018) Accuracy of the lever sign to diagnose anterior cruciate ligament tear: a systematic review with meta-analysis. Int J Sports Phys Ther 13(5):774–788

    Article  PubMed  PubMed Central  Google Scholar 

  3. De Jong MJ, Roosen D, Degens JHRJ, van den Heuvel TRA, Romberg M, Hameeteman W, Bodelier AGL, Romanko I, Lukas M, Winkens B, Markus T, Masclee AAM, van Tubergen A, Jonkers DMAE, Pierik MJ (2018) Development and validation of a patient-reported score to screen for mucosal inflammation in inflammatory bowel disease. J Crohns Colitis 13(5):555–563. https://doi.org/10.1093/ecco-jcc/jjy196

    Article  Google Scholar 

  4. Moons KGM, deGroot JAH, Linnet K, Reitsma JB, Bossuyt PMM (2012) Quantifying the added value of a diagnostic test or marker. Clin Chem 58(10):1408–1417

    Article  PubMed  Google Scholar 

  5. Linnet K, Bossuyt PMM, Moons KGM, Reitsma JB (2012) Quantifying the accuracy of a diagnostic test or marker. Clin Chem 58(9):1292–1301

    Article  CAS  PubMed  Google Scholar 

  6. Bossuyt PMM, Reitsma JB, Linnet K, Moons KGM (2012) Beyond diagnostic accuracy: the clinical utility of diagnostic tests. Clin Chem 58(12):1636–1643

    Article  CAS  PubMed  Google Scholar 

  7. Atkin W, Cross AJ, Kralj-Hans I, MacRae E, Piggott C, Pearson S, Wooldrage K, Brown J, Lucas F, Prendergast A, Marchevsky N, Patel B, Pack K, Howe R, Skrobanski H, Kerrison R, Swart N, Snowball J, Duffy SW, Morris S, von Wagner C (2019) Halloran S Faecal immunochemical tests versus colonoscopy for post-polypectomy surveillance: an accuracy, acceptability and economic study. Health Technol Assess 23(1):1–84

    Article  PubMed  PubMed Central  Google Scholar 

  8. Guyatt G, Drummond R, Meade MO, Cook DJ (eds) (2008) Users’ guides to the medical literature: a manual for evidence-based clinical practice, 2nd edn. New York, McGraw Hill

    Google Scholar 

  9. Haynes RB, Sackett DL, Guyatt GH, Tugwell P (2005) Clinical epidemiology: how to do clinical practice research, 3rd edn. Lippincott, Williams and Wilkins, Philadelphia, PA

    Google Scholar 

  10. Grimes D, Schulz K (2005) Refining clinical diagnosis with likelihood ratios. Lancet 365:1500–1505

    Article  PubMed  Google Scholar 

  11. Obuchowski NA (2003) Receiver operating characteristic curves and their use in radiology. Radiology 229:3–8

    Article  PubMed  Google Scholar 

  12. Hanley JA, McNeil BJ (1983) A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148:839–843

    Article  CAS  PubMed  Google Scholar 

  13. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating curves: a nonparametric approach. Biometrics 44:837–845

    Article  CAS  PubMed  Google Scholar 

  14. Glas SG, Lijmer JG, Prins MH et al (2003) The diagnostic odds ratio: a single indicator of test performance. J Clin Epidemiol 56:1129–1135

    Article  PubMed  Google Scholar 

  15. Shiu S-Y, Gatsonis C (2012) On ROC analysis with nonbinary reference standard. Biom J 54(4):457480

    Article  Google Scholar 

  16. Reibnegger G (2013) Beyond the 2x2 contingency table: a primer on entropies and mutual information in various scenarios involving m diagnostic categories and n categories of diagnostic tests. Clin Chim Acta 425:97–103

    Article  CAS  PubMed  Google Scholar 

  17. Joseph L, Gyorkos TW, Coupal L (1995) Bayesian estimation of disease prevalence and the parameters of diagnostic tests in the absence of a gold standard. Am J Epidemiol 141(3):263–272

    Article  CAS  PubMed  Google Scholar 

  18. Limmathurotsakul D, Turner EL, Wuthiekanun V, Thaipadungpanit J, Suputtamongkol Y, Chierakul W et al (2012) Fool’s gold: Why imperfect reference tests are undermining the evaluation of novel diagnostics: A reevaluation of 5 diagnostic tests for leptospirosis. CID 55:322–331

    Article  Google Scholar 

  19. Pan-ngum W, Blacksell SD, Lubell Y, Pukrittayakamee S, Bailey MS, deSilva HJ et al (2013) Estimating the true accuracy of diagnostic tests for Dengue infection using Bayesian latent class models. PLoS One 8(1):1–7

    Article  CAS  Google Scholar 

  20. Lim C, Wannapinij P, White L, Day NPJ, Cooper BS, Peacock SJ et al (2013) Using a web-based application to define the accuracy of diagnostic tests when the gold standard is imperfect. PLoS One 8(11):1–8

    Article  Google Scholar 

  21. Mullherin SA, Miller MC (2002) Spectrum bias or spectrum effect? Subgroup variation in diagnostic test evaluation. Ann Int Med 137:598–602

    Article  Google Scholar 

  22. Goudsmit M, van Campen J, Schilt T, Hinnen C, Franzen S, Schmand B (2018) One size does not fit all: Comparative diagnostic accuracy of the Rowland Universal Dementia Assessment Scale and the Mini mental State Examination in a memory clinic population with very low education. Dement Geriatr Cogn Disord Extra 8:290–305

    Article  Google Scholar 

  23. Lang S, Armstrong N, Deshpande S, Ramaekers B, Grimm S, de Kock S, Kleijnen J, Westwood M (2019) Clinically inappropriate post hoc exclusion of study participants from test accuracy calculations: the ROMA score, an example from a recent NICE diagnostic assessment. Ann Clin Biochem 56(1):72–81

    Article  PubMed  Google Scholar 

  24. Whiting PF, Rutjes AWS, Westwood ME, Mallett S, and the QUADAS-2 Steering Group (2013) A systematic review classifies sources of bias and variation in diagnostic test accuracy studies. J Clin Epidemiol 66:1093–1104

    Article  PubMed  Google Scholar 

  25. Obuchowski NA (1998) Sample size calculations in studies of test accuracy. Stat Meth Med Res 7:371–392

    Article  CAS  Google Scholar 

  26. Leeflang MMG, Deeks JJ, Takwoingi Y, Macaskill P (2013) Cochrane diagnostic accuracy reviews. Syst Rev 2(82):1–6

    Google Scholar 

  27. Schünemann HJ, Oxman AD, Brozek J, Glasziou P, Jaeschke R, Vist GE, Williams JW Jr, Kunz R, Craig J, Montori VM, Bossuyt P, Guyatt GH, GRADE Working Group (2008) Grading quality of evidence and strength of recommendations for diagnostic tests and strategies. BMJ 336(7653):1106–1110

    Article  PubMed  PubMed Central  Google Scholar 

  28. Whiting PF, Rutjes AWS, Westwood ME, Mallett S, Deeks JJ, Reitsma JB et al (2011) QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann Int Med 155:529–536

    Article  PubMed  Google Scholar 

  29. Clifford T, Cohen JF, Deeks JJ, Gatsonis C, Hooft L, Hunt HA, Hyde CJ, Korevaar DA, Leeflang MMG, Macaskill P, Reitsma JB, Rodin R, Rutjes AWS, Salameh JP, Stevens A, Takwoingi Y, Tonelli M, Weeks L, Whiting P, Willis BH, the PRISMA-DTA Group (2018) Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: the PRISMA-DTA statement. JAMA 319(4):388–396

    Article  PubMed  Google Scholar 

  30. Salameh JP, McInnes MDF, Moher D, Thombs BD, McGrath TA, Frank R, Sharifabadi AD, Kraajipoel N, Levis B, Bossuyt PM (2019) Completeness of reporting of systematic reviews of diagnostic test accuracy based on the PRISMA-DTA reporting guideline. Clin Chem 65(2):291–301

    Article  CAS  PubMed  Google Scholar 

  31. Nguyen AV, Blears EE, Ross E, Lall RR, Ortega-Barnett J (2018) Machine learning applications for the differentiation of primary central nervous system lymphoma from glioblastoma on imaging: a systematic review and meta-analysis. Neurosurg Focus 45:1–10

    Article  Google Scholar 

  32. Ariji Y, Fukuda M, Kise Y, Nozawa M, Yanashita Y, Fujita H, Katsumata A, Ariji E (2018) Contrast-enhanced computed tomography image assessment of cervical lymph node metastasis in patients with oral cancer by using a deep learning system of artificial intelligence. Oral Surg Oral Med Oral Pathol Oral Radiol 000:1–6

    Google Scholar 

  33. Choi H-S, Choe JY, Kim H, Han JW, Chi YK, Kim K, Hong J, Kim T, Yoon S, Kim KW (2018) Deep learning based low-cost high-accuracy diagnostic framework for dementia using comprehensive neuropsychological assessment profiles. BMC Geriatr 18:234–245

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lotsch J, Hummel T (2019) A machine-learned analysis suggests non-redundant diagnostic information in olfactory subtests. IBRO Rep 6:64–73

    Article  PubMed  PubMed Central  Google Scholar 

  35. Choi KJ, Jang JK, Lee SS, Sung YS, Shim WH, Kim HS, Yun J, Choi J-Y, Lee Y, Kang B-K, Kim JH, Kim SY, Yu ES (2018) Development and validation of a deep learning system for staging liver fibrosis by using contrast agent-enhanced CT images of the liver. Radiology 289:688–697

    Article  PubMed  Google Scholar 

  36. Chuchu N, Dinnes J, Takwoingi Y, Matin RN, Bayliss SE, Davenport C, Moreau JF, Bassett O, Godfrey K, O’Sullivan C, Walter FM, Motley R, Deeks JJ, Williams HC, Cochrane Skin Cancer Diagnostic Test Accuracy Group (2018) Teledermatology for diagnosing skin cancer in adults. Cochrane Database Syst Rev 12:CD013193

    PubMed  Google Scholar 

  37. Ferrante di Ruffano L, Takwoingi Y, Dinnes J, Chuchu N, Bayliss SE, Davenport C, Matin RN, Godfrey K, O’Sullivan C, Gulati A, Chan SA, Durack A, O’Connell S, Gardiner MD, Bamber J, Deeks JJ, Williams HC, Cochrane Skin Cancer Diagnostic Test Accuracy Group (2018) Computer-assisted diagnosis techniques (dermoscopy and spectroscopy-based) for diagnosing skin cancer in adults. Cochrane Database Syst Rev 12:CD013186

    PubMed  Google Scholar 

  38. Knottnerus JA, Muris JW (2003) Assessment of the accuracy of diagnostic tests: the cross-sectional study. J Clin Epidemiol 56:1118–1128

    Article  CAS  PubMed  Google Scholar 

  39. Owen RK, Cooper NJ, Quinn TJ, Lees R, Sutton AJ (2018) Network meta-analysis of diagnostic test accuracy studies identifies and ranks the optimal diagnostic tests and thresholds for health care policy and decision-making. J Clin Epidemiol 99:64–74

    Article  PubMed  Google Scholar 

  40. Kang SK (2019) Measuring the value of MRI: comparative effectiveness and outcomes research. J Magn Reson Imaging 49(7):e78–e84. https://doi.org/10.1002/jmri.26647

    Article  PubMed  Google Scholar 

  41. Ransohoff DF (2002) Challenges and opportunities in evaluating diagnostic tests. J Clin Epidiomol 55:1178–1182

    Article  Google Scholar 

  42. Lord SJ, Irwig LE, Simes RJ (2006) When is measuring sensitivity and specificity sufficient to evaluate a diagnostic test, and when do we need randomized trials? Ann Int Med 144:850–855

    Article  PubMed  Google Scholar 

  43. Vos LM, Bruning AHL, Reitsma JB, Schuurman R, Riezebos-Brilman A, Hoepelman AIM, Oosterheert JJ (2019) Rapid molecular tests for , respiratory syncytial virus, and other respiratory viruses: a systematic review of diagnostic accuracy and clinical impact studies influenza. Clin Infect Dis 69(7):1243–1253. https://doi.org/10.1093/cid/ciz056

    Article  CAS  PubMed  Google Scholar 

  44. Rodger M, Ramsay T, Fergusson D (2012) Diagnostic randomized controlled trials: the final frontier. Trials 13(137):1–7

    Google Scholar 

  45. Lijmer J, Bossuyt PMM (2009) Various randomized designs can be used to evaluate medical tests. J Clin Epidemiol 62:364–373

    Article  PubMed  Google Scholar 

  46. di Ruffano LV, Hyde CJ, McCaffrey KJ, Bossuyt PMM, Deeks JJ (2012) Assessing the value of diagnostic tests: a framework for designing and evaluating trials. BMJ 344(e686):1–9

    Google Scholar 

  47. Lu B, Gatsonis C (2012) Efficiency of study designs in diagnostic randomized clinical trials. Stat Med 32(9):1451–1466

    Article  PubMed  PubMed Central  Google Scholar 

  48. Dowdy DW, Gounder CR, Corbett EL, Ngwira LG, Chaisson RE, Merritt MW (2012) The ethics of testing a test: randomized trials of the health impact of diagnostic tests for infectious diseases. CID 55:1522–1526

    Article  Google Scholar 

  49. Novielli N, Sutton AJ, Cooper NJ (2013) Mata-analysis of the accuracy of two diagnostic tests used in combination: Application to the Ddimer test and the Wells Score for the diagnosis of deep vein thrombosis. Value Health 16:619–628

    Article  PubMed  Google Scholar 

  50. Wang J (2019) Analysis of the application values of different combination schemes of liquid-based cytology and high-risk human papilloma virus test in the screening of high-grade cervical lesions. Braz J Med Biol Res 52(1):e7517. https://doi.org/10.1590/1414-431X20187517

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Brendan J. Barrett or John M. Fardy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Barrett, B.J., Fardy, J.M. (2021). Evaluation of Diagnostic Tests. In: Parfrey, P.S., Barrett, B.J. (eds) Clinical Epidemiology. Methods in Molecular Biology, vol 2249. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1138-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1138-8_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1137-1

  • Online ISBN: 978-1-0716-1138-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics