Skip to main content

Identification of Active Transposable Elements in Plants: The Mobilome-Seq Approach

Part of the Methods in Molecular Biology book series (MIMB,volume 2250)

Abstract

Transposable elements (TEs) are the main component of eukaryotic genomes. Besides their impact on genome size, TEs are also functionally important as they can alter gene expression and influence phenotypic variation. In plants, most top-down studies focus on extremely clear phenotypes such as the shape or the color of individuals and do not explore fully the role of TEs in evolution. Assessing the impact of TEs in a more systematic manner, however, requires identifying active TEs to further study their impact on phenotypes. In this chapter, we describe an in planta approach that consists in activating TEs by interfering with pathways involved in their silencing. It enables to directly investigate the functional impact of single TE families at low cost.

Key words

  • Mobilome-seq
  • Circular DNA
  • Stress
  • Epigenetic regulation
  • Short-read sequencing

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-1134-0_8
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-1134-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. van’t Hof AE, Campagne P, Rigden DJ, Yung CJ, Lingley J, Quail MA et al (2016) The industrial melanism mutation in British peppered moths is a transposable element. Nature 534:102–105

    CrossRef  Google Scholar 

  2. McClintock B (1947) Cytogenetic studies of maize and neurospora. Carnegie Inst Wash Yrbk 46:146–152

    Google Scholar 

  3. Bhattacharyya MK, Smith AM, Ellis TH, Hedley C, Martin C (1990) The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme. Cell 60:115–122

    CAS  CrossRef  Google Scholar 

  4. Lisch D (2013) How important are transposons for plant evolution? Nat Rev Genet 14:49–61

    CAS  CrossRef  Google Scholar 

  5. Feschotte C (2008) Transposable elements and the evolution of regulatory networks. Nat Rev Genet 9:397–405

    CAS  CrossRef  Google Scholar 

  6. Lisch D, Bennetzen JL (2011) Transposable element origins of epigenetic gene regulation. Curr Opin Plant Biol 14:156–161

    CAS  CrossRef  Google Scholar 

  7. Xiao H, Jiang N, Schaffner E, Stockinger EJ, van der Knaap E (2008) A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319:1527–1530

    CAS  CrossRef  Google Scholar 

  8. Shang Y, Yang F, Schulman AH, Zhu J, Jia Y, Wang J (2017) Gene deletion in barley mediated by LTR-retrotransposon BARE. Sci Rep 7:43766

    CrossRef  Google Scholar 

  9. Bonchev G, Parisod C (2013) Transposable elements and microevolutionary changes in natural populations. Mol Ecol Resour 13:765–775

    CAS  CrossRef  Google Scholar 

  10. Casacuberta E, González J (2013) The impact of transposable elements in environmental adaptation. Mol Ecol 22:1503–1517

    CAS  CrossRef  Google Scholar 

  11. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    CAS  CrossRef  Google Scholar 

  12. Witte C-P, Le QH, Bureau T, Kumar A (2001) Terminal-repeat retrotransposons in miniature (TRIM) are involved in restructuring plant genomes. Proc Natl Acad Sci U S A 98:13778–13783

    CAS  CrossRef  Google Scholar 

  13. Kalendar R, Vicient CM, Peleg O, Anamthawat-Jonsson K, Bolshoy A, Schulman AH (2004) Large retrotransposon derivatives: abundant, conserved but nonautonomous retroelements of barley and related genomes. Genetics 166:1437–1450

    CAS  CrossRef  Google Scholar 

  14. Vitte C, Fustier MA, Alix K, Tenaillon MI (2014) The bright side of transposons in crop evolution. Br Funct Genomics 13:276–295

    CrossRef  Google Scholar 

  15. Grandbastien MA (2015) LTR retrotransposons, handy hitchhikers of plant regulation and stress response. Biochim Biophys Acta 1849:403–416

    CAS  CrossRef  Google Scholar 

  16. Galindo-González L, Sarmiento F, Quimbaya M (2018) Shaping plant adaptability, genome structure and gene expression through transposable element epigenetic control: focus on methylation. Agronomy 8:180

    CrossRef  Google Scholar 

  17. Jeong H-H, Yalamanchili HK, Guo C, Shulman JM, Liu Z (2018) An ultra-fast and scalable quantification pipeline for transposable elements from next generation sequencing data. Pac Symp Biocomput 23:168–179

    PubMed  Google Scholar 

  18. Thieme M, Lanciano S, Balzergue S, Daccord N, Mirouze M, Bucher E (2017) Inhibition of RNA polymerase II allows controlled mobilisation of retrotransposons for plant breeding. Genome Biol 18:134

    CrossRef  Google Scholar 

  19. Cuerda-Gil D, Slotkin RK (2016) Non-canonical RNA-directed DNA methylation. Nat Plants 2:16211

    CrossRef  Google Scholar 

  20. Schulman AH (2013) Retrotransposon replication in plants. Curr Opin Virol 3:604–614

    CAS  CrossRef  Google Scholar 

  21. Tanskanen JA, Sabot F, Vicient C, Schulman AH (2007) Life without GAG: the BARE-2 retrotransposon as a parasite’s parasite. Gene 390:166–174

    CAS  CrossRef  Google Scholar 

  22. Ito H, Gaubert H, Bucher E, Mirouze M, Vaillant I, Paszkowski J (2011) An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 472:115–119

    CAS  CrossRef  Google Scholar 

  23. Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98:704–711

    CAS  CrossRef  Google Scholar 

  24. Cho J, Benoit M, Catoni M, Drost H, Brestovitsky A, Oosterbeek M et al (2019) Sensitive detection of pre-integration intermediates of long terminal repeat retrotransposons in crop plants. Nat Plants 5:26–33

    CAS  CrossRef  Google Scholar 

  25. Lanciano S, Carpentier M, Llauro C, Jobet E, Robakowska-hyzorek D, Lasserre E et al (2017) Sequencing the extrachromosomal circular mobilome reveals retrotransposon activity in plants. PLoS Genet 13(2):e10, 1–20

    CrossRef  Google Scholar 

  26. Flavell AJ, Ish-Horowicz D (1981) Extrachromosomal circular copies of the eukaryotic transposable element copia in cultured Drosophila cells. Nature 292:591–595

    CAS  CrossRef  Google Scholar 

  27. Mirouze M, Reinders J, Bucher E, Nishimura T, Schneeberger K, Ossowski S, et al. (2009) Selective epigenetic control of retrotransposition in Arabidopsis. Nature 461: 427–430

    Google Scholar 

  28. Miura A, Kato M, Watanabe K, Kawabe A, Kotani H, Kakutani T (2004) Genomic localization of endogenous mobile CACTA family transposons in natural variants of Arabidopsis thaliana. Mol Genet Genomics 270: 524–532

    Google Scholar 

  29. Tsukahara S, Kobayashi A, Kawabe A, Mathieu O, Miura A, Kakutani T (2009) Bursts of retrotransposition reproduced in Arabidopsis. Nature 461: 423–426

    Google Scholar 

  30. Paszkowski J (2015) Controlled activation of retrotransposition for plant breeding. Curr Opin Biotechnol 32: 200–206

    Google Scholar 

  31. Hu L, Li N, Xu C, Zhong S, Lin X, Yang J, et al. (2014) Mutation of a major CG methylase in rice causes genome-wide hypomethylation, dysregulated genome expression, and seedling lethality. Proc Natl Acad Sci 111: 10642–10647

    Google Scholar 

  32. Thieme M, Bucher E (2018) Transposable elements as tool for crop improvement. In Advances in Botanical Research, vol 88 “Plant Epigenetics Coming of Age For Breeding”. Elsevier Ltd.

    Google Scholar 

  33. Negi P, Rai AN, Suprasanna P (2016) Moving through the Stressed Genome: Emerging Regulatory Roles for Transposons in Plant Stress Response. Front Plant Sci 7:1448

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Swiss National Science Foundation (PZ00P3_154724) and the University Research Priority Programs (URPP) Evolution in Action of the University of Zürich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne C. Roulin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Thieme, M., Roulin, A.C. (2021). Identification of Active Transposable Elements in Plants: The Mobilome-Seq Approach. In: Cho, J. (eds) Plant Transposable Elements. Methods in Molecular Biology, vol 2250. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1134-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1134-0_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1133-3

  • Online ISBN: 978-1-0716-1134-0

  • eBook Packages: Springer Protocols