Bureau TE, Ronald PC, Wessler SR (1996) A computer-based systematic survey reveals the predominance of small inverted-repeat elements in wild-type rice genes. Proc Natl Acad Sci U S A 93(16):8524–8529
CAS
CrossRef
Google Scholar
Jiang N, Bao Z, Zhang X et al (2003) An active DNA transposon family in rice. Nature 421:163–167
CAS
CrossRef
Google Scholar
Lu C, Chen J, Zhang Y et al (2012) Miniature inverted-repeat transposable elements (MITEs) have been accumulated through amplification bursts and play important roles in gene expression and species diversity in Oryza sativa. Mol Biol Evol 29:1005–1017
CAS
CrossRef
Google Scholar
Hirsch CD, Springer NM (2017) Transposable element influences on gene expression in plants. Biochim Biophys Acta Gene Regul Mech 1860:157–165
CAS
CrossRef
Google Scholar
Stapley J, Santure AW, Dennis SR (2015) Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species. Mol Ecol 24:2241–2252
CAS
CrossRef
Google Scholar
Niu XM, Xu YC, Li ZW et al (2019) Transposable elements drive rapid phenotypic variation in Capsella rubella. Proc Natl Acad Sci U S A 116:6908–6913
CAS
CrossRef
Google Scholar
Mills RE, Luttig CT, Larkins CE et al (2006) An initial map of insertion and deletion (INDEL) variation in the human genome. Genome Res 16:1182–1190
CAS
CrossRef
Google Scholar
Kang H, Zhu D, Lin R et al (2016) A novel method for identifying polymorphic transposable elements via scanning of high-throughput short reads. DNA Res 23:241–251
CAS
CrossRef
Google Scholar
Tu Z (2001) Eight novel families of miniature inverted repeat transposable elements in the African malaria mosquito, Anopheles gambiae. Proc Natl Acad Sci U S A 98:1699–1704
CAS
CrossRef
Google Scholar
Santiago N, Herráiz C, Goñi JR et al (2002) Genome-wide analysis of the emigrant family of MITE of Arabidopsis thaliana. Mol Biol Evol 19:2285–2293
CAS
CrossRef
Google Scholar
Han Y, Wessler SR (2010) MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences. Nucleic Acids Res 38:e199
CrossRef
Google Scholar
Yang G, Hall TC (2003) MAK, a computational tool kit for automated MITE analysis. Nucleic Acids Res 31:3659–3665
CAS
CrossRef
Google Scholar
Yang G (2013) MITE Digger, an efficient and accurate algorithm for genome wide discovery of miniature inverted repeat transposable elements. BMC Bioinformatics 14:186
CrossRef
Google Scholar
Chen J, Hu Q, Zhang Y et al (2014) P-MITE: a database for plant minimature inverted-repeat transposable elements. Nucleic Acids Res 42:D1176–D1181
CAS
CrossRef
Google Scholar
Zhuang J, Wang J, Theurkauf W et al (2014) TEMP: a computational method for analyzing transposable element polymorphism in populations. Nucleic Acids Res 42:6826–6838
CAS
CrossRef
Google Scholar
Williams-Carrier R, Stiffler N, Belcher S et al (2010) Use of Illumina sequencing to identify transposon insertions underlying mutant phenotypes in high-copy Mutator lines of maize. Plant J 63:167–177
CAS
PubMed
Google Scholar
Tang Y, Ma X, Zhao S et al (2019) Identification of an active miniature inverted-repeat transposable element mJing and its diversification in rice. Plant J 98:639–653
CAS
CrossRef
Google Scholar
Bentley DR, Balasubramanian S, Swerdlow HP et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59
CAS
CrossRef
Google Scholar
Murray M, Thompson W (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325
CAS
CrossRef
Google Scholar
Ye K, Schulz MH, Long Q et al (2009) Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics 25:2865–2871
CAS
CrossRef
Google Scholar
Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12
CrossRef
Google Scholar
Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359
CAS
CrossRef
Google Scholar
Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729
CAS
CrossRef
Google Scholar