Skip to main content

Role of Metabotropic Glutamate Receptors (mGluRs) in the Regulation of Cellular Calcium Signaling: Theory, Protocols, and Data Analysis

  • Protocol
  • First Online:
Metabotropic Glutamate Receptor Technologies

Part of the book series: Neuromethods ((NM,volume 164))

Abstract

Glutamate is the primary fast excitatory neurotransmitter which is responsible for neuronal communication, memory formation, and learning. It activates metabotropic glutamate receptors (mGluRs), a family of G protein-coupled receptors, which lead to oscillations in cytosolic calcium (Ca2+) through a variety of signaling cascades. Mechanisms of these cascades and their modulation by drugs are well understood, but there are limited methodological guidelines available for systematic study of Ca2+-spiking behavior and quantification of spiking information. Neurons are known to exhibit an extensive variety of Ca2+-spiking behavior from bursting spikes to sustained plateau, thus constituting the oscillations into high-dimensional time-series data, comprising of heterogeneous features (amplitude, frequency, inter-spike interval, etc.). This chapter addresses the signaling pathways involved in mGluR-mediated Ca2+-spiking along with a system of nonlinear ordinary differential equation used for explaining glutamate-induced-Ca2+-responses. We also discuss the modulatory effect of mGluRs on other channels and receptors involved in Ca2+-signaling. The chapter specifically focuses on the details of the imaging systems and parameters that can be used for high-resolution-Ca2+-imaging for monitoring neural activity. Here, we provide a detailed workflow of algorithms for various data analysis tools including clustering, measuring correlations, and probability density function (PDF) fitting for analyzing the heterogeneous data obtained from mGluR-mediated-Ca2+-spiking in primary hippocampal neurons. Moreover, we provide sample codes and MATLAB functions that can be used for automated analysis of large-scale-Ca2+-spiking data. Since there is a high level of heterogeneity present in dissociated cultured neurons, we provide a protocol for grouping the data and random sampling to perform the statistical analysis using clustering and PDF fitting.

All authors contributed to the conception and design of the chapter. VD, SS, RKG and LG planned the complete work. All authors wrote various sections of the manuscript. VD contributed to the theory of mGluRs and prepared the schematic diagrams and figures. SS contributed to the protocol writing for clustering and correlation analysis. RKG provided the details of experiments and the imaging setup. AS provided the theory and analysis of PDF fitting. RS performed analysis of early and delayed DHPG response. LG performed the imaging experiments. All authors read and approved the final manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Filmore D (2004) It’s a GPCR world. Mod Drug Discov 7:24–28

    CAS  Google Scholar 

  2. Benarroch EE (2008) Metabotropic glutamate receptors: synaptic modulators and therapeutic targets for neurologic disease. Neurology 70:964–968

    Article  PubMed  Google Scholar 

  3. Kang SJ, Kaang B-K (2016) Metabotropic glutamate receptor dependent long-term depression in the cortex. Korean J Physiol Pharmacol 20:557–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Miladinovic T, Nashed MG, Singh G (2015) Overview of glutamatergic dysregulation in central pathologies. Biomol Ther 5:3112–3141

    CAS  Google Scholar 

  5. Dwyer TM (2018) Chapter 4: Chemical signaling in the nervous system. In: Haines DE, Mihailoff GA (eds) Fundamental neuroscience for basic and clinical applications, 5th edn. Elsevier, Amsterdam, pp 54–71

    Chapter  Google Scholar 

  6. Bröer A, Deitmer JW, Bröer S (2004) Astroglial glutamine transport by system N is upregulated by glutamate. Glia 48:298–310

    Article  PubMed  Google Scholar 

  7. D’Antoni S, Berretta A, Bonaccorso CM et al (2008) Metabotropic glutamate receptors in glial cells. Neurochem Res 33:2436–2443

    Article  PubMed  CAS  Google Scholar 

  8. Bhosale G, Sharpe JA, Sundier SY et al (2015) Calcium signaling as a mediator of cell energy demand and a trigger to cell death. Ann N Y Acad Sci 1350:107–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chemaly ER, Troncone L, Lebeche D (2018) SERCA control of cell death and survival. Cell Calcium 69:46–61

    Article  CAS  PubMed  Google Scholar 

  10. Saxena A, Dhyani V, Gare S, et al. (2019) Effect of topology and time window on probability distribution underlying baclofen induced Ca2+ response in hippocampal neurons, in: 2019 41st annual international conference of the IEEE engineering in Medicine & Biology Society (EMBC), pp. 2997–3000.

    Google Scholar 

  11. Wegierski T, Kuznicki J (2018) Neuronal calcium signaling via store-operated channels in health and disease. Cell Calcium 74:102–111

    Article  CAS  PubMed  Google Scholar 

  12. Fedder K, Sabo S (2015) On the role of glutamate in presynaptic development: possible contributions of presynaptic NMDA receptors. Biomol Ther 5:3448–3466

    CAS  Google Scholar 

  13. Darnell JE, Lodish HF, Baltimore D (1990) Molecular cell biology. Scientific American Books, New York

    Google Scholar 

  14. Dupont G, Falcke M, Kirk V et al (2016) Models of calcium signalling. Springer, New York

    Book  Google Scholar 

  15. Bezprozvanny I, Watras J, Ehrlich BE (1991) Bell-shaped calcium-response curves of lns (l, 4, 5) P3-and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351:751–754

    Article  CAS  PubMed  Google Scholar 

  16. Neher E, Augustine GJ (1992) Calcium gradients and buffers in bovine chromaffin cells. J Physiol 450:273–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  CAS  PubMed  Google Scholar 

  18. Li J, Tang J, Ma J et al (2016) Dynamic transition of neuronal firing induced by abnormal astrocytic glutamate oscillation. Sci Rep 6:1–10

    CAS  Google Scholar 

  19. Nadkarni S, Jung P (2004) Dressed neurons: modeling neural–glial interactions. Phys Biol 1:35–41

    Article  CAS  PubMed  Google Scholar 

  20. Li Y-X, Rinzel J (1994) Equations for InsP3 receptor-mediated [Ca2+] i oscillations derived from a detailed kinetic model: a Hodgkin-Huxley like formalism. J Theor Biol 166:461–473

    Article  CAS  PubMed  Google Scholar 

  21. Slack MD, Martinez ED, Wu LF et al (2008) Characterizing heterogeneous cellular responses to perturbations. Proc Natl Acad Sci 105:19306–19311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mukamel EA, Nimmerjahn A, Schnitzer MJ (2009) Automated analysis of cellular signals from large-scale calcium imaging data. Neuron 63:747–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Muldoon SF, Soltesz I, Cossart R (2013) Spatially clustered neuronal assemblies comprise the microstructure of synchrony in chronically epileptic networks. Proc Natl Acad Sci 110:3567–3572

    Article  CAS  Google Scholar 

  24. Upadhyay V, Teja RS, Dhyani V et al (2019) A model screening framework for the generation of Ca2+ oscillations in hippocampal neurons using differential evolution. 9th International IEEE/EMBS Conference on Neural Engineering (NER), San Francisco, CA, USA, pp 961–964

    Google Scholar 

  25. Singh R, Saxena A, Giri L 2019 Single neuron imaging reveals metabotropic glutamate receptor mediated bursting and delay in calcium oscillation in hippocampal neurons, in: 2019 41st annual international conference of the IEEE engineering in Medicine & Biology Society (EMBC), pp. 5146–5149.

    Google Scholar 

  26. Mennerick S, Zorumski CF (1995) Paired-pulse modulation of fast excitatory synaptic currents in microcultures of rat hippocampal neurons. J Physiol 488:85–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Moulder KL, Jiang X, Taylor AA et al (2007) Vesicle pool heterogeneity at hippocampal glutamate and GABA synapses. J Neurosci 27:9846–9854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cajigas I, Malik WQ, Brown EN (2012) nSTAT: open-source neural spike train analysis toolbox for Matlab. J Neurosci Methods 211:245–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kakizoe Y, Nakaoka S, Beauchemin CAA et al (2015) A method to determine the duration of the eclipse phase for in vitro infection with a highly pathogenic SHIV strain. Sci Rep 5:10371

    Article  PubMed  PubMed Central  Google Scholar 

  30. Leiva V, Tejo M, Guiraud P et al (2015) Modeling neural activity with cumulative damage distributions. Biol Cybern 109:421–433

    Article  PubMed  Google Scholar 

  31. Honarnejad K, Kirsch AK, Daschner A et al (2013) FRET-based calcium imaging: a tool for high-throughput/content phenotypic drug screening in Alzheimer disease. J Biomol Screen 18:1309–1320

    Article  PubMed  CAS  Google Scholar 

  32. Graves AR, Moore SJ, Bloss EB et al (2012) Hippocampal pyramidal neurons comprise two distinct cell types that are countermodulated by metabotropic receptors. Neuron 76:776–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Harris KD, Csicsvari J, Hirase H et al (2003) Organization of cell assemblies in the hippocampus. Nature 424:552–556

    Article  CAS  PubMed  Google Scholar 

  34. Caporale N, Dan Y (2008) Spike timing–dependent plasticity: a Hebbian learning rule. Annu Rev Neurosci 31:25–46

    Article  CAS  PubMed  Google Scholar 

  35. Takahashi N, Sasaki T, Matsumoto W et al (2010) Circuit topology for synchronizing neurons in spontaneously active networks. Proc Natl Acad Sci U S A 107:10244–10249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tchumatchenko T, Geisel T, Volgushev M et al (2010) Signatures of synchrony in pairwise count correlations. Front Comput Neurosci 4:1–10

    PubMed  PubMed Central  Google Scholar 

  37. Markram H, Lübke J, Frotscher M et al (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213–215

    Article  CAS  PubMed  Google Scholar 

  38. Penn Y, Segal M, Moses E (2016) Network synchronization in hippocampal neurons. Proc Natl Acad Sci 113:3341–3346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Branco T, Häusser M (2010) The single dendritic branch as a fundamental functional unit in the nervous system. Curr Opin Neurobiol 20:494–502

    Article  CAS  PubMed  Google Scholar 

  40. MATLAB (2018) The MathWorks, Inc. Natick, Massachusetts, USA

    Google Scholar 

  41. Swain S, Gupta RK, Ratnayake K et al (2018) Confocal imaging and k-means clustering of GABAB and mGluR mediated modulation of Ca2+ spiking in hippocampal neurons. ACS Chem Neurosci 9:3094–3107

    Article  CAS  PubMed  Google Scholar 

  42. Lüscher C, Huber KM (2010) Group 1 mGluR-dependent synaptic long-term depression: mechanisms and implications for circuitry and disease. Neuron 65:445–459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Muguruza C, Meana JJ, Callado LF (2016) Group II metabotropic glutamate receptors as targets for novel antipsychotic drugs. Front Pharmacol 7:130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Pereira V, Goudet C (2018) Emerging trends in pain modulation by metabotropic glutamate receptors. Front Mol Neurosci 11:464

    Article  CAS  PubMed  Google Scholar 

  45. Dhyani V, Gare S, Gupta RK et al (2020) GPCR mediated control of calcium dynamics: A systems perspective. Cellular Signalling. 22:109717

    Google Scholar 

  46. Saxena A, Dhyani V, Jana S et al (2020) Application of kohonen-self organizing map to cluster drug induced Ca2+ response in hippocampal neurons at different drug dose, in: 2020 National Conference on Communications (NCC), 1–6

    Google Scholar 

  47. Nguyen HD, Ullmann JF, McLachlan GJ et al (2018) Whole‐volume clustering of time series data from zebrafish brain calcium images via mixture modeling. Stat Anal Data Min: The ASA Data Sci Journal 11:5–16

    Google Scholar 

  48. Delestro F, Scheunemann L, Pedrazzani M et al (2020) In vivo large-scale analysis of Drosophila neuronal calcium traces by automated tracking of single somata. Sci Rep 10:1–4

    Google Scholar 

  49. Wiśniewski K, Car H (2002) (S)‐3, 5‐DHPG: a review. CNS drug reviews. 8:101–16

    Google Scholar 

  50. Venkateswarlu K, Suman G, Dhyani V et al (2020) Three‐dimensional imaging and quantification of real‐time cytosolic calcium oscillations in microglial cells cultured on electrospun matrices using laser scanning confocal microscopy. Biotechnol. Bioeng. 117:3108–23

    Google Scholar 

  51. Neagoe VE, Chirila-Berbentea V (2016) Improved Gaussian mixture model with expectation-maximization for clustering of remote sensing imagery, in: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 3063–3065

    Google Scholar 

  52. Mölter J, Avitan L, Goodhill GJ (2018) Detecting neural assemblies in calcium imaging data. BMC Biol. 16:1–20

    Google Scholar 

  53. Shahulhameed S, Swain S, Jana S et al (2020) A Robust Model System for Retinal Hypoxia: Live Imaging of Calcium Dynamics and Gene Expression Studies in Primary Human Mixed Retinal Culture. Front. Neurosci. 13:1445

    Google Scholar 

  54. Anner P, Passecker J, Klausberger T et al (2020) Ca2+ imaging of neurons in freely moving rats with automatic post hoc histological identification. J. Neurosci. Methods. 11:108765

    Google Scholar 

  55. Lake EM, Ge X, Shen X et al (2020) Simultaneous cortex-wide fluorescence Ca2+ imaging and whole-brain fMRI. Nat. Methods. 2:1–0

    Google Scholar 

  56. Negri S, Faris P, Pellavio G et al (2020) Group 1 metabotropic glutamate receptors trigger glutamate-induced intracellular Ca2+ signals and nitric oxide release in human brain microvascular endothelial cells. Cell. Mol. Life Sci. 77:2235–53

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Steven Mennerick for providing the hippocampal neurons and performing the experiments with dissociated neurons. We also thank Dr. Narsimhan Gautam for performing imaging assays using confocal microscopy at Washington University School of Medicine, St. Louis.We thank Vani Kalyanraman and Dr. Soumya Jana for their valuable discusssions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lopamudra Giri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dhyani, V., Swain, S., Gupta, R.K., Saxena, A., Singh, R., Giri, L. (2021). Role of Metabotropic Glutamate Receptors (mGluRs) in the Regulation of Cellular Calcium Signaling: Theory, Protocols, and Data Analysis. In: Olive, M.F., Burrows, B.T., Leyrer-Jackson, J.M. (eds) Metabotropic Glutamate Receptor Technologies. Neuromethods, vol 164. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1107-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1107-4_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1106-7

  • Online ISBN: 978-1-0716-1107-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics