Skip to main content

Murine Models of Eosinophil Function in Fungal and Viral Infections

  • Protocol
  • First Online:
Eosinophils

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2241))

Abstract

Eosinophils are granulocytes that were historically considered to be terminally differentiated at the time of bone marrow egress. However, more recent evidence provides a new outlook on these cells as complex immunomodulators that are involved in host defense and homeostasis. Our work established a role for eosinophils as mediators of antiviral immune responses during influenza in hosts that were sensitized and challenged with fungal allergens. Herein, we describe methods for working with murine eosinophils in the context of influenza A virus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jacobsen EA, Helmers RA, Lee JJ, Lee NA (2012) The expanding role(s) of eosinophils in health and disease. Blood 120(19):3882–3890. https://doi.org/10.1182/blood-2012-06-330845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Blanchard C, Rothenberg ME (2009) Biology of the eosinophil. Adv Immunol 101:81–121. https://doi.org/10.1016/s0065-2776(08)01003-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kostikas K, Brindicci C, Patalano F (2018) Blood eosinophils as biomarkers to drive treatment choices in asthma and COPD. Curr Drug Targets 19(16):1882–1896. https://doi.org/10.2174/1389450119666180212120012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mesnil C, Raulier S, Paulissen G, Xiao X, Birrell MA, Pirottin D, Janss T, Starkl P, Ramery E, Henket M, Schleich FN, Radermecker M, Thielemans K, Gillet L, Thiry M, Belvisi MG, Louis R, Desmet C, Marichal T, Bureau F (2016) Lung-resident eosinophils represent a distinct regulatory eosinophil subset. J Clin Invest 126(9):3279–3295. https://doi.org/10.1172/JCI85664

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rothenberg ME, Hogan SP (2006) The eosinophil. Annu Rev Immunol 24:147–174. https://doi.org/10.1146/annurev.immunol.24.021605.090720

    Article  CAS  PubMed  Google Scholar 

  6. LeMessurier KS, Samarasinghe AE (2019) Eosinophils: nemeses of pulmonary pathogens? Curr Allergy Asthma Rep 19(8):36. https://doi.org/10.1007/s11882-019-0867-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Spencer LA, Bonjour K, Melo RC, Weller PF (2014) Eosinophil secretion of granule-derived cytokines. Front Immunol 5:496. https://doi.org/10.3389/fimmu.2014.00496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dworski R, Simon HU, Hoskins A, Yousefi S (2011) Eosinophil and neutrophil extracellular DNA traps in human allergic asthmatic airways. J Allergy Clin Immunol 127(5):1260–1266. https://doi.org/10.1016/j.jaci.2010.12.1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yousefi S, Gold JA, Andina N, Lee JJ, Kelly AM, Kozlowski E, Schmid I, Straumann A, Reichenbach J, Gleich GJ, Simon HU (2008) Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med 14(9):949–953. https://doi.org/10.1038/nm.1855

    Article  CAS  PubMed  Google Scholar 

  10. Samarasinghe AE, Melo RC, Duan S, LeMessurier KS, Liedmann S, Surman SL, Lee JJ, Hurwitz JL, Thomas PG, McCullers JA (2017) Eosinophils promote antiviral immunity in mice infected with Influenza A Virus. J Immunol 198(8):3214–3226. https://doi.org/10.4049/jimmunol.1600787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Weller PF, Rand TH, Barrett T, Elovic A, Wong DT, Finberg RW (1993) Accessory cell function of human eosinophils. HLA-DR-dependent, MHC-restricted antigen-presentation and IL-1 alpha expression. J Immunol 150(6):2554–2562

    CAS  PubMed  Google Scholar 

  12. Akuthota P, Wang H, Weller PF (2010) Eosinophils as antigen-presenting cells in allergic upper airway disease. Curr Opin Allergy Clin Immunol 10(1):14–19. https://doi.org/10.1097/ACI.0b013e328334f693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. LeMessurier KS, Rooney R, Ghoenim HE, Liu B, Li K, Smallwood HS, Samarasinghe AE (2020) Influenza A virus directly modulates mouse eosinophils responses. J Leuko Biol 108(1):151–168. https://doi.org/10.1002/JLB.4MA0320-343R

  14. Samarasinghe AE, Woolard SN, Boyd KL, Hoselton SA, Schuh JM, McCullers JA (2014) The immune profile associated with acute allergic asthma accelerates clearance of influenza virus. Immunol Cell Biol 92(5):449–459. https://doi.org/10.1038/icb.2013.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Eisfeld AJ, Neumann G, Kawaoka Y (2014) Influenza A virus isolation, culture and identification. Nat Protoc 9(11):2663–2681. https://doi.org/10.1038/nprot.2014.180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dyer KD, Moser JM, Czapiga M, Siegel SJ, Percopo CM, Rosenberg HF (2008) Functionally competent eosinophils differentiated ex vivo in high purity from normal mouse bone marrow. J Immunol 181(6):4004–4009

    Article  CAS  PubMed  Google Scholar 

  17. Schuh JM, Hoselton SA (2013) An inhalation model of allergic fungal asthma: Aspergillus fumigatus-induced inflammation and remodeling in allergic airway disease. Methods Mol Biol 1032:173–184. https://doi.org/10.1007/978-1-62703-496-8_14

    Article  CAS  PubMed  Google Scholar 

  18. Samarasinghe AE, Hoselton SA, Schuh JM (2011) The absence of VPAC2 leads to aberrant antibody production in Aspergillus fumigatus sensitized and challenged mice. Peptides 32(1):131–137. https://doi.org/10.1016/j.peptides.2010.09.022

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the American Lung Association Biomedical Grant RG-350980 and the NIH grant R01-AI125481 to AES. Meenakshi Tiwary and Kim S. LeMessurier contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amali E. Samarasinghe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tiwary, M., LeMessurier, K.S., Samarasinghe, A.E. (2021). Murine Models of Eosinophil Function in Fungal and Viral Infections. In: Walsh, G.M. (eds) Eosinophils. Methods in Molecular Biology, vol 2241. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1095-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1095-4_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1094-7

  • Online ISBN: 978-1-0716-1095-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics