Skip to main content

Efficient Genome Editing in Rice Protoplasts Using CRISPR/CAS9 Construct

  • Protocol
  • First Online:
Rice Genome Engineering and Gene Editing

Abstract

Genome editing technologies, mainly CRISPR/CAS9, are revolutionizing plant biology and breeding. Since the demonstration of its effectiveness in eukaryotic cells, a very large number of derived technologies has emerged. Demonstrating and comparing the effectiveness of all these new technologies in entire plants is a long, tedious, and labor-intensive process that generally involves the production of transgenic plants and their analysis. Protoplasts, plant cells free of their walls, offer a simple, high-throughput system to test the efficiency of these editing technologies in a few weeks’ time span. We have developed a routine protocol using protoplasts to test editing technologies in rice. Our protocol allows to test more than 30 constructs in protoplasts prepared from leaf tissues of 100, 9–11-day-old seedlings. CRISPR/CAS9 construct effectiveness can be clearly established within less than a week. We provide here a full protocol, from designing sgRNA to mutation analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  Google Scholar 

  2. Hess GT, Tycko J, Yao D, Bassik MC (2017) Methods and applications of CRISPR-mediated base editing in eukaryotic genomes. Mol Cell 68:26–43

    Article  CAS  Google Scholar 

  3. Yin K, Gao C, Qiu JL (2017) Progress and prospects in plant genome editing. Nat Plants 3:17107

    Article  CAS  Google Scholar 

  4. Li X, Zhou W, Ren Y, Tian X, Lv T, Wang Z, Fang J, Chu C, Yang J, Bu Q (2017a) High-efficiency breeding of early-maturing rice cultivars via CRISPR/Cas9-mediated genome editing. J Genet Genomics 44:175–178

    Article  Google Scholar 

  5. Mundt DJ, Kelsey JL, Golden AL, Panjabi MM, Pastides H, Berg AT, Sklar J, Hosea T (1993) An epidemiologic study of sports and weight lifting as possible risk factors for herniated lumbar and cervical discs. The Northeast Collaborative Group on Low Back Pain. Am J Sports Med 21:854–860

    Article  CAS  Google Scholar 

  6. Shen L, Wang C, Fu Y, Wang J, Liu Q, Zhang X, Yan C, Qian Q, Wang K (2016) QTL editing confers opposing yield performance in different rice varieties. J Integr Plant Biol 60(2):89–93

    Article  Google Scholar 

  7. Xu R, Yang Y, Qin R, Li H, Qiu C, Li L, Wei P, Yang J (2016) Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice. J Genet Genomics 43:529–532

    Article  Google Scholar 

  8. Rodriguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB (2017) Engineering quantitative trait variation for crop improvement by genome editing. Cell 171:470–480. e478

    Article  CAS  Google Scholar 

  9. Moreno-Mateos MA, Fernandez JP, Rouet R, Vejnar CE, Lane MA, Mis E, Khokha MK, Doudna JA, Giraldez AJ (2017) CRISPR-Cpf1 mediates efficient homology-directed repair and temperature-controlled genome editing. Nat Commun 8:2024

    Article  Google Scholar 

  10. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771

    Article  CAS  Google Scholar 

  11. Hu X, Wang C, Fu Y, Liu Q, Jiao X, Wang K (2016) Expanding the range of CRISPR/Cas9 genome editing in rice. Mol Plant 9:943–945

    Article  CAS  Google Scholar 

  12. Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, Gonzales AP, Li Z, Peterson RT, Yeh JR et al (2015) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523:481–485

    Article  Google Scholar 

  13. Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA et al (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:442–451

    Article  CAS  Google Scholar 

  14. Li Z, Zhang D, Xiong X, Yan B, Xie W, Sheen J, Li JF (2017b) A potent Cas9-derived gene activator for plant and mammalian cells. Nat Plants 3:930–936

    Article  CAS  Google Scholar 

  15. Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR (2017) Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551:464–471

    Article  CAS  Google Scholar 

  16. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–424

    Article  CAS  Google Scholar 

  17. Shimatani Z, Kashojiya S, Takayama M, Terada R, Arazoe T, Ishii H, Teramura H, Yamamoto T, Komatsu H, Miura K et al (2017) Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol 35:441–443

    Article  CAS  Google Scholar 

  18. Zong Y, Wang Y, Li C, Zhang R, Chen K, Ran Y, Qiu JL, Wang D, Gao C (2017) Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol 35:438–440

    Article  CAS  Google Scholar 

  19. Gil-Humanes J, Wang Y, Liang Z, Shan Q, Ozuna CV, Sanchez-Leon S, Baltes NJ, Starker C, Barro F, Gao C et al (2017) High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant J 89:1251–1262

    Article  CAS  Google Scholar 

  20. Paix A, Folkmann A, Goldman DH, Kulaga H, Grzelak MJ, Rasoloson D, Paidemarry S, Green R, Reed RR, Seydoux G (2017) Precision genome editing using synthesis-dependent repair of Cas9-induced DNA breaks. Proc Natl Acad Sci U S A 114:E10745–E10754

    Article  CAS  Google Scholar 

  21. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  Google Scholar 

  22. Rahdar M, McMahon MA, Prakash TP, Swayze EE, Bennett CF, Cleveland DW (2015) Synthetic CRISPR RNA-Cas9-guided genome editing in human cells. Proc Natl Acad Sci U S A 112:E7110–E7117

    Article  CAS  Google Scholar 

  23. Collonnier C, Epert A, Mara K, Maclot F, Guyon-Debast A, Charlot F, White C, Schaefer DG, Nogue F (2017) CRISPR-Cas9-mediated efficient directed mutagenesis and RAD51-dependent and RAD51-independent gene targeting in the moss Physcomitrella patens. Plant Biotechnol J 15:122–131

    Article  CAS  Google Scholar 

  24. Lin CS, Hsu CT, Yang LH, Lee LY, Fu JY, Cheng QW, Wu FH, Hsiao HC, Zhang Y, Zhang R et al (2017) Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single cell mutation detection to mutant plant regeneration. Plant Biotechnol J 16(7):1295–1310

    Article  Google Scholar 

  25. Malnoy M, Viola R, Jung MH, Koo OJ, Kim S, Kim JS, Velasco R, Nagamangala Kanchiswamy C (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7:1904

    Article  Google Scholar 

  26. Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, Qu LJ (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 23:1233–1236

    Article  CAS  Google Scholar 

  27. Kumagai H, Kouchi H (2003) Gene silencing by expression of hairpin RNA in Lotus japonicus roots and root nodules. Mol Plant Microbe Interact 16:663–668

    Article  CAS  Google Scholar 

  28. Haeussler M, Schonig K, Eckert H, Eschstruth A, Mianne J, Renaud JB, Schneider-Maunoury S, Shkumatava A, Teboul L, Kent J et al (2016) Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol 17:148

    Article  Google Scholar 

  29. Bae S, Park J, Kim JS (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30:1473–1475

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the French government through the program “Investissements d’Avenir” and by the French National Research Agency, in the frame of the research project called “GENIUS” (Genome ENgineering Improvement for Useful plants of a Sustainable agriculture), ANR11-BTBR-0001-GENIUS. Thibault Mounier Ph.D. is partly funded by CRP-Rice and University of Montpellier. Léo Herbert is the recipient of a CIRAD and INRA Ph.D. fellowship. Martine Bes, Leo Herbert, and Thibault Mounier contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Périn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bes, M. et al. (2021). Efficient Genome Editing in Rice Protoplasts Using CRISPR/CAS9 Construct. In: Bandyopadhyay, A., Thilmony, R. (eds) Rice Genome Engineering and Gene Editing. Methods in Molecular Biology, vol 2238. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1068-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1068-8_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1067-1

  • Online ISBN: 978-1-0716-1068-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics