Skip to main content

In Vitro Generation of Murine Myeloid-Derived Suppressor Cells, Analysis of Markers, Developmental Commitment, and Function

  • Protocol
  • First Online:
Myeloid-Derived Suppressor Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2236))

Abstract

Myeloid-derived suppressor cells (MDSC) appear at relatively low frequencies in diseased organs such as tumors or infection sites, but accumulate systemically in the spleen. So far MDSC have been reported in humans and experimental animals such as mice, rats, and nonhuman primates. Therefore, methods to generate MDSC in large amounts in vitro can serve as an additional tool to study their biology. Here, we describe in detail the generation of murine MDSC with GM-CSF from bone marrow (BM). Both subsets of granulocytic (G-MDSC) and monocytic MDSC (M-MDSC) are generated by this cytokine. We provide panels of phenotypic markers to distinguish them from non-suppressive cells and define developmental stages of monocytes developing into M-MDSC by two subsequent steps in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Youn J-I, Nagaraj S, Collazo M, Gabrilovich DI (2008) Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 181(8):5791–5802

    Article  CAS  Google Scholar 

  2. Movahedi K, Guilliams M, Van den Bossche J, Van den Bergh R, Gysemans C, Beschin A, De Baetselier P, Van Ginderachter JA (2008) Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 111(8):4233–4244

    Article  CAS  Google Scholar 

  3. Greifenberg V, Ribechini E, Rossner S, Lutz MB (2009) Myeloid-derived suppressor cell activation by combined LPS and IFN-gamma treatment impairs DC development. Eur J Immunol 39(10):2865–2876. https://doi.org/10.1002/eji.200939486

    Article  CAS  PubMed  Google Scholar 

  4. Ribechini E, Greifenberg V, Sandwick S, Lutz MB (2010) Subsets, expansion and activation of myeloid-derived suppressor cells. Med Microbiol Immunol 199(3):273–281. https://doi.org/10.1007/s00430-010-0151-4

    Article  CAS  PubMed  Google Scholar 

  5. Veglia F, Perego M, Gabrilovich D (2018) Myeloid-derived suppressor cells coming of age. Nat Immunol 19(2):108–119. https://doi.org/10.1038/s41590-017-0022-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang C, Wang S, Liu Y, Yang C (2016) Epigenetics in myeloid derived suppressor cells: a sheathed sword towards cancer. Oncotarget 7(35):57452–57463. https://doi.org/10.18632/oncotarget.10767

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ribechini E, Hutchinson J, Walter S, Schleicher U, Jordán Garrote A-L, Potter SJ, Müller N, Raifer H, Huber M, Beilhack A, Lohoff M, Bogdan C, Hermanns HM, Geissler EK, Lutz MB (2017) Novel GM-CSF signals via IFN-gR/IRF-1 and AKT/mTOR license monocytes for suppressor function. Blood Adv 1(14):947–960

    Article  CAS  Google Scholar 

  8. Dumitru CA, Moses K, Trellakis S, Lang S, Brandau S (2012) Neutrophils and granulocytic myeloid-derived suppressor cells: immunophenotyping, cell biology and clinical relevance in human oncology. Cancer Immunol Immunotherap 61:1155. https://doi.org/10.1007/s00262-012-1294-5

    Article  CAS  Google Scholar 

  9. Rossner S, Voigtlander C, Wiethe C, Hanig J, Seifarth C, Lutz MB (2005) Myeloid dendritic cell precursors generated from bone marrow suppress T cell responses via cell contact and nitric oxide production in vitro. Eur J Immunol 35(12):3533–3544. https://doi.org/10.1002/eji.200526172

    Article  CAS  PubMed  Google Scholar 

  10. Gabrilovich DI, Bronte V, Chen SH, Colombo MP, Ochoa A, Ostrand-Rosenberg S, Schreiber H (2007) The terminology issue for myeloid-derived suppressor cells. Cancer Res 67(1):425. author reply 426

    Article  CAS  Google Scholar 

  11. Lutz MB, Kukutsch N, Ogilvie AL, Rossner S, Koch F, Romani N, Schuler G (1999) An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods 223(1):77–92. https://doi.org/10.1016/S0022-1759(98)00204-X

    Article  CAS  PubMed  Google Scholar 

  12. Lutz MB, Strobl H, Schuler G, Romani N (2017) GM-CSF monocyte-derived cells and langerhans cells as part of the dendritic cell family. Front Immunol 8:1388. https://doi.org/10.3389/fimmu.2017.01388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Marigo I, Bosio E, Solito S, Mesa C, Fernandez A, Dolcetti L, Ugel S, Sonda N, Bicciato S, Falisi E, Calabrese F, Basso G, Zanovello P, Cozzi E, Mandruzzato S, Bronte V (2010) Tumor-induced tolerance and immune suppression depend on the C/EBPbeta; transcription factor. Immunity 32(6):1–13. https://doi.org/10.1016/j.immuni.2010.05.010

    Article  CAS  Google Scholar 

  14. Arakawa Y, Qin J, Chou HS, Bhatt S, Wang L, Stuehr D, Ghosh A, Fung JJ, Lu L, Qian S (2014) Cotransplantation with myeloid-derived suppressor cells protects cell transplants: a crucial role of inducible nitric oxide synthase. Transplantation 97(7):740–747. https://doi.org/10.1097/01.TP.0000442504.23885.f7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Drujont L, Carretero-Iglesia L, Bouchet-Delbos L, Beriou G, Merieau E, Hill M, Delneste Y, Cuturi MC, Louvet C (2014) Evaluation of the therapeutic potential of bone marrow-derived myeloid suppressor cell (MDSC) adoptive transfer in mouse models of autoimmunity and allograft rejection. PLoS One 9(6):e100013. https://doi.org/10.1371/journal.pone.0100013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Messmann JJ, Reisser T, Leithauser F, Lutz MB, Debatin KM, Strauss G (2015) In vitro-generated MDSCs prevent murine GVHD by inducing type 2 T cells without disabling antitumor cytotoxicity. Blood 126(9):1138–1148. https://doi.org/10.1182/blood-2015-01-624163

    Article  CAS  PubMed  Google Scholar 

  17. Sharma MD, Rodriguez PC, Koehn BH, Baban B, Cui Y, Guo G, Shimoda M, Pacholczyk R, Shi H, Lee EJ, Xu H, Johnson TS, He Y, Mergoub T, Venable C, Bronte V, Wolchok JD, Blazar BR, Munn DH (2018) Activation of p53 in immature myeloid precursor cells controls differentiation into Ly6c(+)CD103(+) Monocytic antigen-presenting cells in tumors. Immunity 48(1):91–106. e106. https://doi.org/10.1016/j.immuni.2017.12.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ribechini E, Leenen PJM, Lutz MB (2009) Gr-1 antibody induces STAT signaling, macrophage marker expression and abrogation of myeloid-derived suppressor cell activity in BM cells. Eur J Immunol 39(12):3538–3551. https://doi.org/10.1002/eji.200939530

    Article  CAS  PubMed  Google Scholar 

  19. Evrard M, Kwok IWH, Chong SZ, Teng KWW, Becht E, Chen J, Sieow JL, Penny HL, Ching GC, Devi S, Adrover JM, Li JLY, Liong KH, Tan L, Poon Z, Foo S, Chua JW, Su IH, Balabanian K, Bachelerie F, Biswas SK, Larbi A, Hwang WYK, Madan V, Koeffler HP, Wong SC, Newell EW, Hidalgo A, Ginhoux F, Ng LG (2018) Developmental analysis of bone marrow neutrophils reveals populations specialized in expansion, trafficking, and effector functions. Immunity 48(2):364–379. e368. https://doi.org/10.1016/j.immuni.2018.02.002

    Article  CAS  PubMed  Google Scholar 

  20. De Veirman K, Van Ginderachter JA, Lub S, De Beule N, Thielemans K, Bautmans I, Oyajobi BO, De Bruyne E, Menu E, Lemaire M, Van Riet I, Vanderkerken K, Van Valckenborgh E (2015) Multiple myeloma induces Mcl-1 expression and survival of myeloid-derived suppressor cells. Oncotarget 6(12):10532–10547. https://doi.org/10.18632/oncotarget.3300

    Article  PubMed  PubMed Central  Google Scholar 

  21. Haverkamp JM, Smith AM, Weinlich R, Dillon CP, Qualls JE, Neale G, Koss B, Kim Y, Bronte V, Herold MJ, Green DR, Opferman JT, Murray PJ (2014) Myeloid-derived suppressor activity is mediated by monocytic lineages maintained by continuous inhibition of extrinsic and intrinsic death pathways. Immunity 41(6):947–959. https://doi.org/10.1016/j.immuni.2014.10.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zal T, Volkmann A, Stockinger B (1994) Mechanisms of tolerance induction in major histocompatibility complex class II-restricted T cells specific for a blood-borne self-antigen. J Exp Med 180(6):2089–2099. https://doi.org/10.1084/jem.180.6.2089

    Article  CAS  PubMed  Google Scholar 

  23. Lutz MB, Inaba K, Schuler G, Romani N (2016) Still alive and kicking: in-vitro-generated GM-CSF dendritic cells! Immunity 44(1):1–2. https://doi.org/10.1016/j.immuni.2015.12.013

    Article  CAS  PubMed  Google Scholar 

  24. Nikolic T, de Bruijn MF, Lutz MB, Leenen PJ (2003) Developmental stages of myeloid dendritic cells in mouse bone marrow. Int Immunol 15(4):515–524

    Article  CAS  Google Scholar 

  25. Lutz MB, Rößner S (2008) Factors influencing the generation of murine dendritic cells from bone marrow: the special role of fetal calf serum. Immunobiology 212(9–10):855–862

    Article  Google Scholar 

  26. Lutz MB, Suri RM, Niimi M, Ogilvie AL, Kukutsch NA, Rossner S, Schuler G, Austyn JM (2000) Immature dendritic cells generated with low doses of GM-CSF in the absence of IL-4 are maturation resistant and prolong allograft survival in vivo. Eur J Immunol 30(7):1813–1822

    Article  CAS  Google Scholar 

  27. Alshetaiwi H, Pervolarakis N, McIntyre LL, Ma D, Nguyen Q, Rath JA, Nee K, Hernandez G, Evans K, Torosian L, Silva A, Walsh C, Kessenbrock K (2020) Defining the emergence of myeloid-derived suppressor cells in breast cancer using single-cell transcriptomics. Sci Immunol 5(44):eaay6017. https://doi.org/10.1126/sciimmunol.aay6017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The research work of our lab on MDSC has been supported by funding through grants from DFG under LU851/6-2 and 18-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred B. Lutz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Eckert, I., Ribechini, E., Lutz, M.B. (2021). In Vitro Generation of Murine Myeloid-Derived Suppressor Cells, Analysis of Markers, Developmental Commitment, and Function. In: Brandau, S., Dorhoi, A. (eds) Myeloid-Derived Suppressor Cells. Methods in Molecular Biology, vol 2236. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1060-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1060-2_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1059-6

  • Online ISBN: 978-1-0716-1060-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics