Skip to main content

Focused Ultrasound-Mediated Blood-Brain Barrier Disruption for Enhanced Drug Delivery to Brain Tumors

  • Protocol
  • First Online:
Nanotherapy for Brain Tumor Drug Delivery

Part of the book series: Neuromethods ((NM,volume 163))

Abstract

Transcranial focused ultrasound (FUS) in conjunction with intravenous circulating ultrasound contrast agents (UCAs) or microbubbles (MBs) can promote a transient and spatiotemporally selective increase in blood-brain barrier (BBB) permeability. The coupling of FUS with image guidance, such as magnetic resonance imaging (MRI)-guided FUS (MRgFUS), can further facilitate the visualization of targeted, localized therapeutic delivery to the central nervous system (CNS), potentially revolutionizing current treatment approaches for a spectrum of neurological diseases and conditions. Targeted and effective treatments of numerous CNS diseases are hindered by the BBB, a neurovascular structural and biological interface impeding the transport of molecules, particles, and cells between the systemic circulation and the underlying brain tissues. The functionality of FUS in conjunction with UCAs or MBs to safely and reversibly disrupt the BBB has become an area of intense research efforts both preclinically and clinically. Clinical efforts related to this approach are currently underway in patients with brain tumors, early Alzheimer’s disease, and amyotrophic lateral sclerosis (ALS). Critical ongoing issues include maintaining and monitoring safe levels of ultrasound exposure within different brain regions and tissues. Ongoing work related to real-time monitoring of the levels of acoustic energy deposition within brain regions warrants further investigation and integration into preclinical and clinical FUS systems. Despite the technological advancements in the field and the great promise of this new approach, there is a relative void in the knowledge pertaining to the underlying biological and molecular alterations induced by FUS in the brain. In this chapter, we review basic concepts of the BBB, the cellular and molecular composition of the BBB, the acoustic emissions and bio-effects associated with FUS-mediated activation of UCAs, and provide a summary of recent advances in strategies for detecting, controlling, and mapping FUS activity in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jones EG (1970) On the mode of entry of blood vessels into the cerebral cortex. J Anat 106(Pt 3):507–520

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Rennels ML, Nelson E (Oct 1975) Capillary innervation in the mammalian central nervous system: an electron microscopic demonstration. Am J Anat 144(2):233–241. https://doi.org/10.1002/aja.1001440208

    Article  CAS  PubMed  Google Scholar 

  3. Cohen Z, Bonvento G, Lacombe P, Hamel E (Nov 1996) Serotonin in the regulation of brain microcirculation. Prog Neurobiol 50(4):335–362

    Article  CAS  PubMed  Google Scholar 

  4. Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 5(5):347–360. https://doi.org/10.1038/nrn1387

    Article  CAS  PubMed  Google Scholar 

  5. Somlyo AP, Wu X, Walker LA, Somlyo AV (1999) Pharmacomechanical coupling: the role of calcium, G-proteins, kinases and phosphatases. Rev Physiol Biochem Pharmacol 134:201–234

    CAS  PubMed  Google Scholar 

  6. Lo EH, Dalkara T, Moskowitz MA (2003) Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 4(5):399–414. https://doi.org/10.1038/nrn1106

    Article  CAS  PubMed  Google Scholar 

  7. del Zoppo GJ, Mabuchi T (2003) Cerebral microvessel responses to focal ischemia. J Cereb Blood Flow Metab 23(8):879–894. https://doi.org/10.1097/01.Wcb.0000078322.96027.78

    Article  PubMed  Google Scholar 

  8. Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7(1):41–53. https://doi.org/10.1038/nrn1824

    Article  CAS  PubMed  Google Scholar 

  9. Arvanitis CD, Ferraro GB, Jain RK (2019) The blood–brain barrier and blood–tumour barrier in brain tumours and metastases. Nat Rev Cancer 20(1):26–41. https://doi.org/10.1038/s41568-019-0205-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dubois LG et al (2014) Gliomas and the vascular fragility of the blood brain barrier. Front Cell Neurosci 8:418–418. https://doi.org/10.3389/fncel.2014.00418

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wolburg H, Noell S, Fallier-Becker P, Mack AF, Wolburg-Buchholz K (2012) The disturbed blood-brain barrier in human glioblastoma. Mol Aspects Med 33(5-6):579–589. https://doi.org/10.1016/j.mam.2012.02.003

    Article  CAS  PubMed  Google Scholar 

  12. Liebner S et al (2000) Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol 100(3):323–331. https://doi.org/10.1007/s004010000180

    Article  CAS  PubMed  Google Scholar 

  13. Wolburg H et al (Jun 2003) Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol 105(6):586–592. https://doi.org/10.1007/s00401-003-0688-z

    Article  CAS  PubMed  Google Scholar 

  14. Medawar PB (Feb 1948) Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br J Exp Pathol 29(1):58–69

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Billingham RE, Brent L, Medawar PB, Sparrow EM (1954) Quantitative studies on tissue transplantation immunity. I. The survival times of skin homografts exchanged between members of different inbred strains of mice. Proc R Soc Lond B Biol Sci 143(910):43–58

    Article  CAS  PubMed  Google Scholar 

  16. Billingham RE, Brent L, Medawar PB (1953) Actively acquired tolerance of foreign cells. Nature 172(4379):603–606. https://doi.org/10.1038/172603a0

    Article  CAS  PubMed  Google Scholar 

  17. Murphy JB, Sturm E (1923) Conditions determining the transplantability of tissues in the brain. J Exp Med 38(2):183–197. https://doi.org/10.1084/jem.38.2.183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shirai Y (1921) On the transplantation of the rat sarcoma in adult heterogenous animals. Jpn Med World 1(14):14–15

    Google Scholar 

  19. Waksman BH, Adams RD (1955) Allergic neuritis: an experimental disease of rabbits induced by the injection of peripheral nervous tissue and adjuvants. J Exp Med 102(2):213–236. https://doi.org/10.1084/jem.102.2.213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ransohoff RM, Engelhardt B (2012) The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 12(9):623–635. https://doi.org/10.1038/nri3265

    Article  CAS  PubMed  Google Scholar 

  21. Shechter R et al (2013) Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity 38(3):555–569. https://doi.org/10.1016/j.immuni.2013.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kipnis J, Gadani S, Derecki NC (2012) Pro-cognitive properties of T cells. Nat Rev Immunol 12(9):663–669. https://doi.org/10.1038/nri3280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Reifenberger G, Wirsching HG, Knobbe-Thomsen CB, Weller M (2017) Advances in the molecular genetics of gliomas - implications for classification and therapy. Nat Rev Clin Oncol 14(7):434–452. https://doi.org/10.1038/nrclinonc.2016.204

    Article  CAS  PubMed  Google Scholar 

  24. Ostrom QT et al (2015) CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008-2012. Neuro Oncol 17(Suppl 4):iv1–iv62. https://doi.org/10.1093/neuonc/nov189

    Article  PubMed  PubMed Central  Google Scholar 

  25. Louis DN et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  26. Mrdjen D et al (2018) High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48(2):380–395.e6. https://doi.org/10.1016/j.immuni.2018.01.011

    Article  CAS  PubMed  Google Scholar 

  27. Bechmann I et al (2001) Turnover of rat brain perivascular cells. Exp Neurol 168(2):242–249. https://doi.org/10.1006/exnr.2000.7618

    Article  CAS  PubMed  Google Scholar 

  28. Greter M, Lelios I, Croxford AL (2015) Microglia versus myeloid cell nomenclature during brain inflammation. Frontiers in Immunology, Short Survey 6:249. https://doi.org/10.3389/fimmu.2015.00249

    Article  CAS  Google Scholar 

  29. Kivisakk P et al (2009) Localizing central nervous system immune surveillance: meningeal antigen-presenting cells activate T cells during experimental autoimmune encephalomyelitis. Ann Neurol 65(4):457–469. https://doi.org/10.1002/ana.21379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ginhoux F et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330(6005):841–845. https://doi.org/10.1126/science.1194637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schulz C et al (2012) A lineage of myeloid cells independent of myb and hematopoietic stem cells. Science 335(6077):86–90. https://doi.org/10.1126/science.1219179

    Article  CAS  Google Scholar 

  32. Schreiner B, Heppner FL, Becher B (2009) Modeling multiple sclerosis in laboratory animals. Semin Immunopathol 31(4):479–495. https://doi.org/10.1007/s00281-009-0181-4

    Article  PubMed  Google Scholar 

  33. Louveau A et al (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523(7560):337–341. https://doi.org/10.1038/nature14432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rankin LC, Artis D (2018) Beyond host defense: emerging functions of the immune system in regulating complex tissue physiology. Cell 173(3):554–567. https://doi.org/10.1016/j.cell.2018.03.013

    Article  CAS  PubMed  Google Scholar 

  35. Gadani SP, Smirnov I, Smith AT, Overall CC, Kipnis J (2017) Characterization of meningeal type 2 innate lymphocytes and their response to CNS injury. J Exp Med 214(2):285–296. https://doi.org/10.1084/jem.20161982

    Article  CAS  PubMed  Google Scholar 

  36. Aspelund A et al (2015) A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 212(7):991–999. https://doi.org/10.1084/jem.20142290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Louveau A et al (2018) CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat Neurosci 21(10):1380–1391. https://doi.org/10.1038/s41593-018-0227-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Antila S et al (2017) Development and plasticity of meningeal lymphatic vessels. J Exp Med 214(12):3645–3667. https://doi.org/10.1084/jem.20170391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Da Mesquita S et al (2018) Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature 560(7717):185–191. https://doi.org/10.1038/s41586-018-0368-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Neuwelt E et al (2008) Strategies to advance translational research into brain barriers. Lancet Neurol 7(1):84–96

    Article  CAS  PubMed  Google Scholar 

  41. Kipnis J (2016) Multifaceted interactions between adaptive immunity and the central nervous system. Science 353(6301):766–771. https://doi.org/10.1126/science.aag2638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lathia JD, Mack SC, Mulkearns-Hubert EE, Valentim CL, Rich JN (2015) Cancer stem cells in glioblastoma. Genes Dev 29(12):1203–1217. https://doi.org/10.1101/gad.261982.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hambardzumyan D, Amankulor NM, Helmy KY, Becher OJ, Holland EC (2009) Modeling Adult Gliomas Using RCAS/t-va Technology. Transl Oncol 2(2):89

    Article  PubMed  PubMed Central  Google Scholar 

  44. Weller M et al (2015) Glioma. Nat Rev Dis Primers 1:15017. https://doi.org/10.1038/nrdp.2015.17

    Article  PubMed  Google Scholar 

  45. Phillips HS et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9(3):157–173. https://doi.org/10.1016/j.ccr.2006.02.019

    Article  CAS  PubMed  Google Scholar 

  46. Ellor SV, Pagano-Young TA, Avgeropoulos NG (2014) Glioblastoma: background, standard treatment paradigms, and supportive care considerations. J Law Med Ethics 42(2):171–182. https://doi.org/10.1111/jlme.12133

    Article  PubMed  Google Scholar 

  47. Thakkar JP et al (2014) Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol Biomarkers Prev 23(10):1985–1996. https://doi.org/10.1158/1055-9965.Epi-14-0275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ostrom QT et al (2014) The epidemiology of glioma in adults: a state of the science review. Neuro Oncol 16(7):896–913. https://doi.org/10.1093/neuonc/nou087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Blissitt PA (2014) Clinical practice guideline series update: care of the adult patient with a brain tumor. J Neurosci Nurs 46(6):367–368. https://doi.org/10.1097/jnn.0000000000000088

    Article  PubMed  Google Scholar 

  50. Westphal M, Lamszus K (Oct 2015) Circulating biomarkers for gliomas. Nat Rev Neurol 11(10):556–566. https://doi.org/10.1038/nrneurol.2015.171

    Article  CAS  PubMed  Google Scholar 

  51. Schweitzer T, Vince GH, Herbold C, Roosen K, Tonn JC (2001) Extraneural metastases of primary brain tumors. J Neurooncol 53(2):107–114. https://doi.org/10.1023/a:1012245115209

    Article  CAS  PubMed  Google Scholar 

  52. Bettegowda C et al (2014) Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 6(224):224ra24. https://doi.org/10.1126/scitranslmed.3007094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fleischhacker M, Schmidt B (2007) Circulating nucleic acids (CNAs) and cancer--a survey. Biochim Biophys Acta 1775(1):181–232. https://doi.org/10.1016/j.bbcan.2006.10.001

    Article  CAS  PubMed  Google Scholar 

  54. Alix-Panabieres C, Schwarzenbach H, Pantel K (2012) Circulating tumor cells and circulating tumor DNA. Annu Rev Med 63:199–215. https://doi.org/10.1146/annurev-med-062310-094219

    Article  CAS  PubMed  Google Scholar 

  55. Müller Bark J, Kulasinghe A, Chua B, Day BW, Punyadeera C (2019) Circulating biomarkers in patients with glioblastoma. British Journal of Cancer 122(3):295–305. https://doi.org/10.1038/s41416-019-0603-6

    Article  PubMed  PubMed Central  Google Scholar 

  56. Best MG, Sol N, Zijl S, Reijneveld JC, Wesseling P, Wurdinger T (2015) Liquid biopsies in patients with diffuse glioma. Acta Neuropathol 129(6):849–865. https://doi.org/10.1007/s00401-015-1399-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rennert RC, Hochberg FH, Carter BS (2016) ExRNA in biofluids as biomarkers for brain tumors. Cell Mol Neurobiol 36(3):353–360. https://doi.org/10.1007/s10571-015-0284-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Muller C et al (2014) Hematogenous dissemination of glioblastoma multiforme. Sci Transl Med 6(247):247ra101. https://doi.org/10.1126/scitranslmed.3009095

    Article  CAS  PubMed  Google Scholar 

  59. T. C. G. A. T. R. Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068. https://doi.org/10.1038/nature07385

    Article  CAS  Google Scholar 

  60. Parsons DW et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897):1807–1812. https://doi.org/10.1126/science.1164382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chow LML et al (2011) Cooperativity within and among Pten, p53, and Rb pathways induces high-grade astrocytoma in adult brain. Cancer cell 19(3):305–316. https://doi.org/10.1016/j.ccr.2011.01.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Alifieris C, Trafalis DT (2015) "glioblastoma multiforme: pathogenesis and treatment," (in eng). Pharmacol Ther 152:63–82. https://doi.org/10.1016/j.pharmthera.2015.05.005

    Article  CAS  PubMed  Google Scholar 

  63. Wilson TA, Karajannis MA, Harter DH (2014) Glioblastoma multiforme: state of the art and future therapeutics. Surg Neurol Int 5:64. https://doi.org/10.4103/2152-7806.132138

    Article  PubMed  PubMed Central  Google Scholar 

  64. Young RM, Jamshidi A, Davis G, Sherman JH (2015) Current trends in the surgical management and treatment of adult glioblastoma. Ann Transl Med 3(9):121. https://doi.org/10.3978/j.issn.2305-5839.2015.05.10

    Article  PubMed  PubMed Central  Google Scholar 

  65. Brennan CW et al (2013) The somatic genomic landscape of glioblastoma. Cell 155(2):462–477. https://doi.org/10.1016/j.cell.2013.09.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Verhaak RG et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110. https://doi.org/10.1016/j.ccr.2009.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang H et al (2015) The challenges and the promise of molecular targeted therapy in malignant gliomas. Neoplasia 17(3):239–255. https://doi.org/10.1016/j.neo.2015.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dirkse A et al (2019) Stem cell-associated heterogeneity in Glioblastoma results from intrinsic tumor plasticity shaped by the microenvironment. Nat Commun 10(1):1787. https://doi.org/10.1038/s41467-019-09853-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wick W, Kessler T (2018) New glioblastoma heterogeneity atlas — a shared resource. Nature Reviews Neurology 14(8):453–454. https://doi.org/10.1038/s41582-018-0038-3

    Article  PubMed  Google Scholar 

  70. Garnier D, Renoult O, Alves-Guerra M-C, Paris F, Pecqueur C (2019) Glioblastoma stem-like cells, metabolic strategy to kill a challenging target. Front Oncol 9:118. https://doi.org/10.3389/fonc.2019.00118

    Article  PubMed  PubMed Central  Google Scholar 

  71. Stupp R et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996. https://doi.org/10.1056/NEJMoa043330

    Article  CAS  PubMed  Google Scholar 

  72. Wick W, Wick A, Schulz JB, Dichgans J, Rodemann HP, Weller M (2002) Prevention of irradiation-induced glioma cell invasion by temozolomide involves caspase 3 activity and cleavage of focal adhesion kinase. Cancer Res 62(6):1915

    CAS  PubMed  Google Scholar 

  73. Nakada M, Nakada S, Demuth T, Tran NL, Hoelzinger DB, Berens ME (2007) Molecular targets of glioma invasion. Cell Mol Life Sci 64(4):458. https://doi.org/10.1007/s00018-007-6342-5

    Article  CAS  PubMed  Google Scholar 

  74. Grossman SA et al (2003) Phase III study comparing three cycles of infusional carmustine and cisplatin followed by radiation therapy with radiation therapy and concurrent carmustine in patients with newly diagnosed supratentorial glioblastoma multiforme: Eastern Cooperative Oncology Group Trial 2394. J Clin Oncol 21(8):1485–1491. https://doi.org/10.1200/jco.2003.10.035

    Article  CAS  PubMed  Google Scholar 

  75. Ewing JR et al (2006) Model selection in magnetic resonance imaging measurements of vascular permeability: Gadomer in a 9L model of rat cerebral tumor. J Cereb Blood Flow Metab 26(3):310–320. https://doi.org/10.1038/sj.jcbfm.9600189

    Article  PubMed  Google Scholar 

  76. Neuwelt EA, Barnett PA, Bigner DD, Frenkel EP (Jul 1982) Effects of adrenal cortical steroids and osmotic blood-brain barrier opening on methotrexate delivery to gliomas in the rodent: the factor of the blood-brain barrier. Proc Natl Acad Sci U S A 79(14):4420–4423. https://doi.org/10.1073/pnas.79.14.4420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Groothuis DR, Fischer JM, Lapin G, Bigner DD, Vick NA (Mar 1982) Permeability of different experimental brain tumor models to horseradish peroxidase. J Neuropathol Exp Neurol 41(2):164–185. https://doi.org/10.1097/00005072-198203000-00006

    Article  CAS  PubMed  Google Scholar 

  78. Neuwelt EA et al (1985) Growth of human lung tumor in the brain of the nude rat as a model to evaluate antitumor agent delivery across the blood-brain barrier. Cancer Res 45(6):2827–2833

    CAS  PubMed  Google Scholar 

  79. Burger PC (1987) The anatomy of astrocytomas. Mayo Clin Proc 62(6):527–529. https://doi.org/10.1016/s0025-6196(12)65479-2

    Article  CAS  PubMed  Google Scholar 

  80. Halperin EC, Burger PC, Bullard DE (1988) The fallacy of the localized supratentorial malignant glioma. Int J Radiat Oncol Biol Phys 15(2):505–509. https://doi.org/10.1016/s0360-3016(98)90036-0

    Article  CAS  PubMed  Google Scholar 

  81. Liu H-L, Fan C-H, Ting C-Y, Yeh C-K (2014) Combining microbubbles and ultrasound for drug delivery to brain tumors: current progress and overview. Theranostics 4(4):432–444. https://doi.org/10.7150/thno.8074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Korpanty G, Grayburn PA, Shohet RV, Brekken RA (2005) Targeting vascular endothelium with avidin microbubbles. Ultrasound Med Biol 31(9):1279–1283. https://doi.org/10.1016/j.ultrasmedbio.2005.06.001

    Article  PubMed  Google Scholar 

  83. Singhal S, Moser CC, Wheatley MA (1993) Surfactant-stabilized microbubbles as ultrasound contrast agents: stability study of Span 60 and Tween 80 mixtures using a Langmuir trough. Langmuir 9(9):2426–2429. https://doi.org/10.1021/la00033a027

    Article  CAS  Google Scholar 

  84. Wang W, Moser CC, Wheatley MA (1996) Langmuir trough study of surfactant mixtures used in the production of a new ultrasound contrast agent consisting of stabilized microbubbles. J Phys Chem 100(32):13815–13821. https://doi.org/10.1021/jp9613549

    Article  CAS  Google Scholar 

  85. Mehta AI et al (2012) Convection enhanced delivery of macromolecules for brain tumors. Curr Drug Discov Technol 9(4):305–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bruce JN et al (2011) Regression of recurrent malignant gliomas with convection-enhanced delivery of topotecan. Neurosurgery 69(6):1272–1279; discussion 1279-80. https://doi.org/10.1227/NEU.0b013e3182233e24

    Article  PubMed  Google Scholar 

  87. Pollina J et al (1998) Intratumoral infusion of topotecan prolongs survival in the nude rat intracranial U87 human glioma model. J Neurooncol 39(3):217–225. https://doi.org/10.1023/a:1005954121521

    Article  CAS  PubMed  Google Scholar 

  88. Lonser RR et al (2007) Image-guided, direct convective delivery of glucocerebrosidase for neuronopathic Gaucher disease. Neurology 68(4):254–261. https://doi.org/10.1212/01.wnl.0000247744.10990.e6

    Article  CAS  PubMed  Google Scholar 

  89. Shahar T, Ram Z, Kanner AA (2012) Convection-enhanced delivery catheter placements for high-grade gliomas: complications and pitfalls. J Neurooncol 107(2):373–378. https://doi.org/10.1007/s11060-011-0751-x

    Article  CAS  PubMed  Google Scholar 

  90. Dressaire E, Bee R, Bell DC, Lips A, Stone HA (2008) Interfacial polygonal nanopatterning of stable microbubbles. Science 320(5880):1198–1201. https://doi.org/10.1126/science.1154601

    Article  CAS  PubMed  Google Scholar 

  91. Myrset AH, Nicolaysen H, Toft K, Christiansen C, Skotland T (1996) Structure and organization of albumin molecules forming the shell of air-filled microspheres: evidence for a monolayer of albumin molecules of multiple orientations stabilizing the enclosed air. Biotechnol Appl Biochem 24(2):145–153

    CAS  PubMed  Google Scholar 

  92. Pattle RE (1955) Properties, function and origin of the alveolar lining layer. Nature 175(4469):1125–1126. https://doi.org/10.1038/1751125b0

    Article  CAS  PubMed  Google Scholar 

  93. Lonser RR, Gogate N, Morrison PF, Wood JD, Oldfield EH (1998) Direct convective delivery of macromolecules to the spinal cord. J Neurosurg 89(4):616–622. https://doi.org/10.3171/jns.1998.89.4.0616

    Article  CAS  PubMed  Google Scholar 

  94. Sprowls SA et al (2019) Improving CNS delivery to brain metastases by blood-tumor barrier disruption. Trends Cancer 5(8):495–505. https://doi.org/10.1016/j.trecan.2019.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA (2001) Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology 220(3):640–646

    Article  CAS  PubMed  Google Scholar 

  96. Wei KC et al (2013) Focused ultrasound-induced blood-brain barrier opening to enhance temozolomide delivery for glioblastoma treatment: a preclinical study. PLos One 8(3):e58995. https://doi.org/10.1371/journal.pone.0058995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. White PJ, Clement GT, Hynynen K (2006) Longitudinal and shear mode ultrasound propagation in human skull bone. Ultrasound Med Biol 32(7):1085–1096. https://doi.org/10.1016/j.ultrasmedbio.2006.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jones RM, O’Reilly MA, Hynynen K (2014) Passive mapping of acoustic sources within the human skull cavity with a hemispherical sparse array using computed tomography-based aberration corrections. J Acoust Soc Am 135(4):2208–2209. https://doi.org/10.1121/1.4877211

    Article  Google Scholar 

  99. Tanter M, Thomas JL, Fink M (1998) Focusing and steering through absorbing and aberrating layers: application to ultrasonic propagation through the skull. J Acoust Soc Am 103(5 Pt 1):2403–2410. https://doi.org/10.1121/1.422759

    Article  CAS  PubMed  Google Scholar 

  100. Hynynen K, Jolesz FA (1998) Demonstration of potential noninvasive ultrasound brain therapy through an intact skull. Ultrasound Med Biol 24(2):275–283. https://doi.org/10.1016/s0301-5629(97)00269-x

    Article  CAS  PubMed  Google Scholar 

  101. McDannold N, Arvanitis CD, Vykhodtseva N, Livingstone MS (2012) Temporary disruption of the blood-brain barrier by use of ultrasound and microbubbles: safety and efficacy evaluation in rhesus macaques. Cancer Res 72(14):3652–3663. https://doi.org/10.1158/0008-5472.Can-12-0128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Clement GT, Hynynen K (2002) A non-invasive method for focusing ultrasound through the human skull. Phys Med Biol 47(8):1219–1236. https://doi.org/10.1088/0031-9155/47/8/301

    Article  CAS  PubMed  Google Scholar 

  103. Hynynen K et al (2006) Pre-clinical testing of a phased array ultrasound system for MRI-guided noninvasive surgery of the brain--a primate study. Eur J Radiol 59(2):149–156. https://doi.org/10.1016/j.ejrad.2006.04.007

    Article  PubMed  Google Scholar 

  104. Marquet F et al (2009) Non-invasive transcranial ultrasound therapy based on a 3D CT scan: protocol validation and in vitro results. Phys Med Biol 54(9):2597–2613. https://doi.org/10.1088/0031-9155/54/9/001

    Article  CAS  PubMed  Google Scholar 

  105. Chauvet D et al (2013) Targeting accuracy of transcranial magnetic resonance-guided high-intensity focused ultrasound brain therapy: a fresh cadaver model. J Neurosurg 118(5):1046–1052. https://doi.org/10.3171/2013.1.Jns12559

    Article  PubMed  Google Scholar 

  106. Aubry JF, Tanter M, Pernot M, Thomas JL, Fink M (2003) Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans. J Acoust Soc Am 113(1):84–93. https://doi.org/10.1121/1.1529663

    Article  CAS  PubMed  Google Scholar 

  107. Miller GW, Eames M, Snell J, Aubry J-F (2015) Ultrashort echo-time MRI versus CT for skull aberration correction in MR-guided transcranial focused ultrasound: In vitro comparison on human calvaria. Med Phys 42(5):2223. https://doi.org/10.1118/1.4916656

    Article  PubMed  Google Scholar 

  108. Sassaroli E, Hynynen K (2005) Resonance frequency of microbubbles in small blood vessels: a numerical study. Phys Med Biol 50(22):5293–5305. https://doi.org/10.1088/0031-9155/50/22/006

    Article  CAS  PubMed  Google Scholar 

  109. Hosseinkhah N, Hynynen K (2012) A three-dimensional model of an ultrasound contrast agent gas bubble and its mechanical effects on microvessels. Phys Med Biol 57(3):785–808. https://doi.org/10.1088/0031-9155/57/3/785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. McDannold N, Vykhodtseva N, Hynynen K (2006) Targeted disruption of the blood-brain barrier with focused ultrasound: association with cavitation activity. Phys Med Biol 51(4):793–807. https://doi.org/10.1088/0031-9155/51/4/003

    Article  CAS  PubMed  Google Scholar 

  111. Tung YS, Vlachos F, Choi JJ, Deffieux T, Selert K, Konofagou EE (2010) In vivo transcranial cavitation threshold detection during ultrasound-induced blood-brain barrier opening in mice. Phys Med Biol 55(20):6141–6155. https://doi.org/10.1088/0031-9155/55/20/007

    Article  PubMed  PubMed Central  Google Scholar 

  112. Arvanitis CD, Livingstone MS, Vykhodtseva N, McDannold N (2012) Controlled ultrasound-induced blood-brain barrier disruption using passive acoustic emissions monitoring. PLoS One 7(9):e45783. https://doi.org/10.1371/journal.pone.0045783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Tung YS, Marquet F, Teichert T, Ferrera V, Konofagou EE (2011) Feasibility of noninvasive cavitation-guided blood-brain barrier opening using focused ultrasound and microbubbles in nonhuman primates. Appl Phys Lett 98(16):163704. https://doi.org/10.1063/1.3580763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. O’Reilly MA, Hynynen K (2012) Blood-brain barrier: real-time feedback-controlled focused ultrasound disruption by using an acoustic emissions-based controller. Radiology 263(1):96–106. https://doi.org/10.1148/radiol.11111417

    Article  PubMed  PubMed Central  Google Scholar 

  115. Aryal M, Arvanitis CD, Alexander PM, McDannold N (2014) Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system. Adv Drug Deliv Rev 72:94–109. https://doi.org/10.1016/j.addr.2014.01.008

    Article  CAS  PubMed  Google Scholar 

  116. Treat LH, McDannold N, Zhang Y, Vykhodtseva N, Hynynen K (2012) Improved anti-tumor effect of liposomal doxorubicin after targeted blood-brain barrier disruption by MRI-guided focused ultrasound in rat glioma. Ultrasound Med Biol 38(10):1716–1725. https://doi.org/10.1016/j.ultrasmedbio.2012.04.015

    Article  PubMed  PubMed Central  Google Scholar 

  117. Yang FY et al (2012) Pharmacokinetic analysis of 111 in-labeled liposomal Doxorubicin in murine glioblastoma after blood-brain barrier disruption by focused ultrasound. PLoS One 7(9):e45468. https://doi.org/10.1371/journal.pone.0045468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lin CY et al (2015) Focused ultrasound-induced blood-brain barrier opening for non-viral, non-invasive, and targeted gene delivery. J Control Release 212:1–9. https://doi.org/10.1016/j.jconrel.2015.06.010

    Article  CAS  PubMed  Google Scholar 

  119. Lin CY et al (2016) Non-invasive, neuron-specific gene therapy by focused ultrasound-induced blood-brain barrier opening in Parkinson’s disease mouse model. J Control Release 235:72–81. https://doi.org/10.1016/j.jconrel.2016.05.052

    Article  CAS  PubMed  Google Scholar 

  120. Zhao G et al (2018) Targeted shRNA-loaded liposome complex combined with focused ultrasound for blood brain barrier disruption and suppressing glioma growth. Cancer Lett 418:147–158. https://doi.org/10.1016/j.canlet.2018.01.035

    Article  CAS  PubMed  Google Scholar 

  121. Mead BP, Mastorakos P, Suk JS, Klibanov AL, Hanes J, Price RJ (2016) Targeted gene transfer to the brain via the delivery of brain-penetrating DNA nanoparticles with focused ultrasound. J Control Release 223:109–117. https://doi.org/10.1016/j.jconrel.2015.12.034

    Article  CAS  PubMed  Google Scholar 

  122. Fisher DG, Price RJ (2019) Recent advances in the use of focused ultrasound for magnetic resonance image-guided therapeutic nanoparticle delivery to the central nervous system. Front Pharmacol 10:1348. https://doi.org/10.3389/fphar.2019.01348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Luo Z et al (2017) On-demand drug release from dual-targeting small nanoparticles triggered by high-intensity focused ultrasound enhanced glioblastoma-targeting therapy. ACS Appl Mater Interfaces 9(37):31612–31625. https://doi.org/10.1021/acsami.7b10866

    Article  CAS  PubMed  Google Scholar 

  124. Brightman MW (1977) Morphology of blood-brain interfaces. Exp Eye Res 25:1–25. https://doi.org/10.1016/S0014-4835(77)80008-0

    Article  PubMed  Google Scholar 

  125. Pardridge WM (2002) Drug and gene targeting to the brain with molecular trojan horses. Nat Rev Drug Discov 1(2):131–139. https://doi.org/10.1038/nrd725

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by the National Institutes of Health (T32 Training Grant in Cancer Biology 5T32CA154274, R01NS107813, and R21NS113016) and the Focused Ultrasound Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graeme F. Woodworth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Anastasiadis, P., Winkles, J.A., Kim, A.J., Woodworth, G.F. (2021). Focused Ultrasound-Mediated Blood-Brain Barrier Disruption for Enhanced Drug Delivery to Brain Tumors. In: Agrahari, V., Kim, A., Agrahari, V. (eds) Nanotherapy for Brain Tumor Drug Delivery. Neuromethods, vol 163. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1052-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1052-7_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1051-0

  • Online ISBN: 978-1-0716-1052-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics