Skip to main content

Methods to Separate, Characterize, and Encapsulate Drug Molecules into Exosomes for Targeted Delivery and Treatment of Glioblastoma

  • Protocol
  • First Online:
Nanotherapy for Brain Tumor Drug Delivery

Part of the book series: Neuromethods ((NM,volume 163))

  • 560 Accesses

Abstract

There have been many drug delivery strategies for the effective targeted delivery of drugs across the blood-brain barrier (BBB) cells to overcome challenges posed by BBB. However, drug delivery to the brain is still a hurdle that has yet to be solved. Due to the tight junctions and high selectivity of the BBB, most active and passive strategies deliver an insufficient or insignificant amount of drug across the protective BBB shield. Recently, exosomes, “biological nanoparticles” with the inherent homing capability to brain cells, have been shown to deliver drugs efficiently by preserving their therapeutic activity. Many different drug molecules are loaded into exosomes, belonging to the category of small synthetic drug molecules (doxorubicin, rhodamine) or large protein-based molecules (catalase) or nucleic acid-based drugs such as small interfering RNA (siRNA). In this chapter, we will focus on describing exosome isolation, characterization, and drug loading methods that are suitable for studying and treating glioblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang J, Li S, Li L, Li M, Guo C, Yao J, Mi S (2015) Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics 13(1):17–24

    Article  CAS  Google Scholar 

  2. Record M, Subra C, Silvente-Poirot S, Poirot M (2011) Exosomes as intercellular signalosomes and pharmacological effectors. Biochem Pharmacol 81(10):1171–1182

    Article  CAS  Google Scholar 

  3. Ha D, Yang N, Nadithe V (2016) Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B 6(4):287–296

    Article  Google Scholar 

  4. Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, Patel T, Piroyan A, Sokolsky M, Kabanov AV, Batrakova EV (2015) Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release 207:18–30

    Article  CAS  Google Scholar 

  5. Jia G, Han Y, An Y, Ding Y, He C, Wang X, Tang Q (2018) NRP-1 targeted and cargo-loaded exosomes facilitate simultaneous imaging and therapy of glioma in vitro and in vivo. Biomaterials 178:302–316

    Article  CAS  Google Scholar 

  6. Batrakova EV, Kim MS (2015) Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Control Release 219:396–405

    Article  CAS  Google Scholar 

  7. Wong KH, Riaz MK, Xie Y, Zhang X, Liu Q, Chen H, Bian Z, Chen X, Lu A, Yang Z (2019) Review of current strategies for delivering Alzheimer’s disease drugs across the blood-brain barrier. Int J Mol Sci 20(2):381

    Article  Google Scholar 

  8. Jarmalaviciute A, Pivoriunas A (2016) Exosomes as a potential novel therapeutic tools against neurodegenerative diseases. Pharmacol Res 113(Pt B):816–822

    Article  CAS  Google Scholar 

  9. Yuan D, Zhao Y, Banks WA, Bullock KM, Haney M, Batrakova E, Kabanov AV (2017) Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain. Biomaterials 142:1–12

    Article  CAS  Google Scholar 

  10. Dong X (2018) Current strategies for brain drug delivery. Theranostics 8(6):1481–1493

    Article  CAS  Google Scholar 

  11. Graner MW, Cumming RI, Bigner DD (2007) The heat shock response and chaperones/heat shock proteins in brain tumors: surface expression, release, and possible immune consequences. J Neurosci 27(42):11214–11227

    Article  CAS  Google Scholar 

  12. Kore RA, Abraham EC (2014) Inflammatory cytokines, interleukin-1 beta and tumor necrosis factor-alpha, upregulated in glioblastoma multiforme, raise the levels of CRYAB in exosomes secreted by U373 glioma cells. Biochem Biophys Res Commun 453(3):326–331

    Article  CAS  Google Scholar 

  13. Domenis R, Cesselli D, Toffoletto B, Bourkoula E, Caponnetto F, Manini I, Beltrami AP, Ius T, Skrap M, Di Loreto C, Gri G (2017) Systemic T cells immunosuppression of glioma stem cell-derived exosomes is mediated by Monocytic myeloid-derived suppressor cells. PLoS One 12(1):e0169932

    Article  Google Scholar 

  14. Cumba Garcia LM, Peterson TE, Cepeda MA, Johnson AJ, Parney IF (2019) Isolation and analysis of plasma-derived exosomes in patients with glioma. Front Oncol 9:651

    Article  Google Scholar 

  15. Clayton A, Court J, Navabi H, Adams M, Mason MD, Hobot JA, Newman GR, Jasani B (2001) Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry. J Immunol Methods 247(1-2):163–174

    Article  CAS  Google Scholar 

  16. Guerreiro EM, Vestad B, Steffensen LA, Aass HCD, Saeed M, Ovstebo R, Costea DE, Galtung HK, Soland TM (2018) Efficient extracellular vesicle isolation by combining cell media modifications, ultrafiltration, and size-exclusion chromatography. PLoS One 13(9):e0204276

    Article  Google Scholar 

  17. Prendergast EN, de Souza Fonseca MA, Dezem FS, Lester J, Karlan BY, Noushmehr H, Lin X, Lawrenson K (2018) Optimizing exosomal RNA isolation for RNA-Seq analyses of archival sera specimens. PLoS One 13(5):e0196913

    Article  Google Scholar 

  18. El-Andaloussi S, Lee Y, Lakhal-Littleton S, Li J, Seow Y, Gardiner C, Alvarez-Erviti L, Sargent IL, Wood MJ (2012) Exosome-mediated delivery of siRNA in vitro and in vivo. Nat Protoc 7(12):2112–2126

    Article  CAS  Google Scholar 

  19. Zhang M, Jin K, Gao L, Zhang Z, Li F, Zhou F, Zhang L (2018) Methods and Technologies for Exosome Isolation and Characterization. Small Methods 2(9):1–10

    Google Scholar 

  20. Muller L, Muller-Haegele S, Mitsuhashi M, Gooding W, Okada H, Whiteside TL (2015) Exosomes isolated from plasma of glioma patients enrolled in a vaccination trial reflect antitumor immune activity and might predict survival. Onco Targets Ther 4(6):e1008347

    Google Scholar 

  21. Epple LM, Griffiths SG, Dechkovskaia AM, Dusto NL, White J, Ouellette RJ, Anchordoquy TJ, Bemis LT, Graner MW (2012) Medulloblastoma exosome proteomics yield functional roles for extracellular vesicles. PLoS One 7(7):e42064

    Article  CAS  Google Scholar 

  22. Muller L, Hong CS, Stolz DB, Watkins SC, Whiteside TL (2014) Isolation of biologically-active exosomes from human plasma. J Immunol Methods 411:55–65

    Article  CAS  Google Scholar 

  23. Yang T, Martin P, Fogarty B, Brown A, Schurman K, Phipps R, Yin VP, Lockman P, Bai S (2015) Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm Res 32(6):2003–2014

    Article  CAS  Google Scholar 

  24. Gomari H, Forouzandeh Moghadam M, Soleimani M, Ghavami M, Khodashenas S (2019) Targeted delivery of doxorubicin to HER2 positive tumor models. Int J Nanomedicine 14:5679–5690

    Article  CAS  Google Scholar 

  25. Mead B, Tomarev S (2017) Bone marrow-derived mesenchymal stem cells-derived exosomes promote survival of retinal ganglion cells through miRNA-dependent mechanisms. Stem Cells Transl Med 6(4):1273–1285

    Article  CAS  Google Scholar 

  26. Puzar Dominkus P, Stenovec M, Sitar S, Lasic E, Zorec R, Plemenitas A, Zagar E, Kreft M, Lenassi M (2018) PKH26 labeling of extracellular vesicles: characterization and cellular internalization of contaminating PKH26 nanoparticles. Biochim Biophys Acta Biomembr 1860(6):1350–1361

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkatareddy Nadithe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nguyen, Y., Kaur, S., Shim, H., Mundra, V., Nadithe, V. (2021). Methods to Separate, Characterize, and Encapsulate Drug Molecules into Exosomes for Targeted Delivery and Treatment of Glioblastoma. In: Agrahari, V., Kim, A., Agrahari, V. (eds) Nanotherapy for Brain Tumor Drug Delivery. Neuromethods, vol 163. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1052-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1052-7_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1051-0

  • Online ISBN: 978-1-0716-1052-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics