Skip to main content

Measurement of Cellulase and Xylanase Activities in Trichoderma reesei

  • Protocol
  • First Online:
Trichoderma reesei

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2234))

Abstract

The microbial cellulase system is responsible for the generation of glucose from cellulose. Cellulases are comprised of at least three major groups of enzymes, namely endoglucanases, exoglucanases, and β-glucosidases. On the other hand, xylanases function in the degradation of hemicellulose and work synergistically with cellulases for the degradation of lignocellulosic biomass. Here, we describe the most commonly used methods for the activity measurement of cellulases and xylanases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang F, Bunterngsook B, Li J-X, Zhao X-Q, Champreda V, Liu C-G, Bai F-W (2019) Chapter 3 - Regulation and production of lignocellulolytic enzymes from Trichoderma reesei for biofuels production. In: Li Y, Ge X (eds) Advances in bioenergy, vol 4. Elsevier, Cambridge, MA, pp 79–119. https://doi.org/10.1016/bs.aibe.2019.03.001

    Chapter  Google Scholar 

  2. Wang M, Li Z, Fang X, Wang L, Qu Y (2012) Cellulolytic enzyme production and enzymatic hydrolysis for second-generation bioethanol production. In: Bai F-W, Liu C-G, Huang H, Tsao GT (eds) Biotechnology in China III: biofuels and bioenergy. Springer, Berlin, pp 1–24. https://doi.org/10.1007/10_2011_131

    Chapter  Google Scholar 

  3. Mullings R (1985) Measurement of saccharification by cellulases. Enzyme Microb Technol 7(12):586–591. https://doi.org/10.1016/0141-0229(85)90025-0

    Article  CAS  Google Scholar 

  4. Wood TM, Bhat KM (1988) Methods for measuring cellulase activities. Methods Enzymol 160:87–112. https://doi.org/10.1016/0076-6879(88)60109-1

    Article  CAS  Google Scholar 

  5. Helbert W, Chanzy H, Husum TL, Schülein M, Ernst S (2003) Fluorescent cellulose microfibrils as substrate for the detection of cellulase activity. Biomacromolecules 4(3):481–487. https://doi.org/10.1021/bm020076i

    Article  CAS  PubMed  Google Scholar 

  6. Eveleigh DE, Mandels M, Andreotti R, Roche C (2009) Measurement of saccharifying cellulase. Biotechnol Biofuels 2(1):21. https://doi.org/10.1186/1754-6834-2-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dashtban M, Maki M, Leung KT, Mao C, Qin W (2010) Cellulase activities in biomass conversion: measurement methods and comparison. Crit Rev Biotechnol 30(4):302–309. https://doi.org/10.3109/07388551.2010.490938

    Article  CAS  PubMed  Google Scholar 

  8. Ghose T (1987) Measurement of cellulase activities. Pure Appl Chem 59(2):257–268

    Article  CAS  Google Scholar 

  9. Zhang YHP, Hong J, Ye X (2009) Cellulase Assays. In: Mielenz JR (ed) Biofuels: methods and protocols. Humana Press, Totowa, NJ, pp 213–231. https://doi.org/10.1007/978-1-60761-214-8_14

    Chapter  Google Scholar 

  10. Jourdier E, Cohen C, Poughon L, Larroche C, Monot F, Chaabane FB (2013) Cellulase activity mapping of Trichoderma reesei cultivated in sugar mixtures under fed-batch conditions. Biotechnol Biofuels 6(1):79. https://doi.org/10.1186/1754-6834-6-79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Deshpande MV, Eriksson K-E, Göran Pettersson L (1984) An assay for selective determination of exo-1,4,-β-glucanases in a mixture of cellulolytic enzymes. Anal Biochem 138(2):481–487. https://doi.org/10.1016/0003-2697(84)90843-1

    Article  CAS  PubMed  Google Scholar 

  12. Percival Zhang YH, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24(5):452–481. https://doi.org/10.1016/j.biotechadv.2006.03.003

    Article  CAS  PubMed  Google Scholar 

  13. Coward-Kelly G, Aiello-Mazzari C, Kim S, Granda C, Holtzapple M (2003) Suggested improvements to the standard filter paper assay used to measure cellulase activity. Biotechnol Bioeng 82(6):745–749. https://doi.org/10.1002/bit.10620

    Article  CAS  PubMed  Google Scholar 

  14. Zhang YHP, Lynd LR (2005) Determination of the number-average degree of polymerization of cellodextrins and cellulose with application to enzymatic hydrolysis. Biomacromolecules 6(3):1510–1515. https://doi.org/10.1021/bm049235j

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Y-HP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88(7):797–824. https://doi.org/10.1002/bit.20282

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Y-HP, Lynd LR (2006) A functionally based model for hydrolysis of cellulose by fungal cellulase. Biotechnol Bioeng 94(5):888–898. https://doi.org/10.1002/bit.20906

    Article  CAS  PubMed  Google Scholar 

  17. Bhat KM, Hay AJ, Claeyssens M, Wood TM (1990) Study of the mode of action and site-specificity of the endo-(1-4)-beta-D-glucanases of the fungus Penicillium pinophilum with normal, 1-3H-labelled, reduced and chromogenic cello-oligosaccharides. Biochem J 266(2):371–378. https://doi.org/10.1042/bj2660371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bhat S, Kennedy JF, Goodenough PW, Owen E, Bhat MK (1997) Effect of d-glucono-1,4-lactone on the production of CMCase, pNPCase and true cellulase by Clostridium thermocellum. Carbohyd Polym 34(1):95–99. https://doi.org/10.1016/S0144-8617(97)00049-0

    Article  CAS  Google Scholar 

  19. Claeyssens M, Aerts G (1992) Characterisation of cellulolytic activities in commercial Trichoderma reesei preparations: an approach using small, chromogenic substrates. Bioresour Technol 39(2):143–146. https://doi.org/10.1016/0960-8524(92)90133-I

    Article  CAS  Google Scholar 

  20. Ghose T, Bisaria VS (1987) Measurement of hemicellulase activities: part I xylanases. Pure Appl Chem 59(12):1739–1751

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported from the Natural Science Foundation of China (grant number 21536006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Qing Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Meng, QS., Zhang, F., Liu, CG., Bai, FW., Zhao, XQ. (2021). Measurement of Cellulase and Xylanase Activities in Trichoderma reesei. In: Mach-Aigner, A.R., Martzy, R. (eds) Trichoderma reesei. Methods in Molecular Biology, vol 2234. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1048-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1048-0_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1047-3

  • Online ISBN: 978-1-0716-1048-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics