Prediction of Cellular Burden with Host–Circuit Models

Part of the Methods in Molecular Biology book series (MIMB, volume 2229)


Heterologous gene expression draws resources from host cells. These resources include vital components to sustain growth and replication, and the resulting cellular burden is a widely recognized bottleneck in the design of robust circuits. In this tutorial we discuss the use of computational models that integrate gene circuits and the physiology of host cells. Through various use cases, we illustrate the power of host–circuit models to predict the impact of design parameters on both burden and circuit functionality. Our approach relies on a new generation of computational models for microbial growth that can flexibly accommodate resource bottlenecks encountered in gene circuit design. Adoption of this modeling paradigm can facilitate fast and robust design cycles in synthetic biology.

Key words

Cellular burden Growth models Whole-cell modeling Gene circuit design Synthetic biology Resource allocation 


  1. 1.
    Andrianantoandro E, Basu S, Karig DK, Weiss R (2006) Synthetic biology: new engineering rules for an emerging discipline. Mol Syst Biol 2(1):2006.0028PubMedPubMedCentralGoogle Scholar
  2. 2.
    Canton B, Labno A, Endy D (2008) Refinement and standardization of synthetic biological parts and devices. Nat Biotechnol 26(7):787PubMedGoogle Scholar
  3. 3.
    Ninfa AJ, Selinsky S, Perry N, Atkins S, Song QX, Mayo A, Arps D, Woolf P, Atkinson MR (2007) Using two-component systems and other bacterial regulatory factors for the fabrication of synthetic genetic devices. Methods Enzymol 422:488–512PubMedPubMedCentralGoogle Scholar
  4. 4.
    Teo JJ, Woo SS, Sarpeshkar R (2015) Synthetic biology: a unifying view and review using analog circuits. IEEE Trans Biomed Circ Syst 9(4):453–474Google Scholar
  5. 5.
    Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403(6767):335PubMedGoogle Scholar
  6. 6.
    Hasty J, McMillen D, Collins JJ (2002) Engineered gene circuits. Nature 420(6912):224PubMedGoogle Scholar
  7. 7.
    Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403(6767):339PubMedGoogle Scholar
  8. 8.
    Tabor JJ, Salis HM, Simpson ZB, Chevalier AA, Levskaya A, Marcotte EM, Voigt CA, Ellington AD (2009) A synthetic genetic edge detection program. Cell 137(7):1272–1281PubMedPubMedCentralGoogle Scholar
  9. 9.
    Mannan AA, Liu D, Zhang F, Oyarzún DA (2017) Fundamental design principles for transcription-factor-based metabolite biosensors. ACS Synth. Biol. 6:1851–1859PubMedGoogle Scholar
  10. 10.
    Oyarzún DA, Stan G-BV (2013) Synthetic gene circuits for metabolic control: design trade-offs and constraints.. J R Soc Interf 10:20120671Google Scholar
  11. 11.
    Nielsen AA, Der BS, Shin J, Vaidyanathan P, Paralanov V, Strychalski EA, Ross D, Densmore D, Voigt CA (2016) Genetic circuit design automation. Science 352(6281):aac7341Google Scholar
  12. 12.
    Chaves M, Oyarzún DA (2019) Dynamics of complex feedback architectures in metabolic pathways. Automatica 99:323–332Google Scholar
  13. 13.
    Carbonell P, Radivojevic T, García Martín H (2019) Opportunities at the intersection of synthetic biology, machine learning, and automation. ACS Synth Biol 8:1474–1477PubMedGoogle Scholar
  14. 14.
    Hughes RA, Ellington AD (2017) Synthetic DNA synthesis and assembly: putting the synthetic in synthetic biology. Cold Spring Harbor Perspect Biol 9:a023812Google Scholar
  15. 15.
    Rondelez Y (2012) Competition for catalytic resources alters biological network dynamics. Phys Rev Lett 108(1):018102PubMedGoogle Scholar
  16. 16.
    Cardinale S, Arkin AP (2012) Contextualizing context for synthetic biology–identifying causes of failure of synthetic biological systems. Biotechnol J 7(7):856–866PubMedPubMedCentralGoogle Scholar
  17. 17.
    Gyorgy A, Del Vecchio D (2014) Limitations and trade-offs in gene expression due to competition for shared cellular resources. In: 2014 IEEE 53rd Annual Conference on Decision and Control (CDC), pp. 5431–5436. IEEE, New York (2014)Google Scholar
  18. 18.
    Mather WH, Hasty J, Tsimring LS, Williams RJ (2013) Translational cross talk in gene networks. Biophys J 104(11), 2564–2572PubMedPubMedCentralGoogle Scholar
  19. 19.
    Scott M, Gunderson CW, Mateescu EM, Zhang Z, Hwa T (2010) Interdependence of cell growth and gene expression: origins and consequences. Science 330(6007):1099–1102PubMedGoogle Scholar
  20. 20.
    Tan C, Marguet P, You L (2009) Emergent bistability by a growth-modulating positive feedback circuit. Nat Chem Biol 5(11):842PubMedPubMedCentralGoogle Scholar
  21. 21.
    Ceroni F, Algar R, Stan G-B, Ellis T (2015) Quantifying cellular capacity identifies gene expression designs with reduced burden. Nat Methods 12(5):415PubMedGoogle Scholar
  22. 22.
    An W, Chin JW (2009) Synthesis of orthogonal transcription-translation networks. Proc Natl Acad SciGoogle Scholar
  23. 23.
    Segall-Shapiro TH, Meyer AJ, Ellington AD, Sontag ED, Voigt CA (2014) A resource allocator for transcription based on a highly fragmented T7 RNA polymerase. Mol Syst Biol 10(7):742PubMedPubMedCentralGoogle Scholar
  24. 24.
    Pasini M, Fernández-Castané A, Jaramillo A, de Mas C, Caminal G, Ferrer P (2016) Using promoter libraries to reduce metabolic burden due to plasmid-encoded proteins in recombinant Escherichia coli. New Biotechnol 33(1):78–90Google Scholar
  25. 25.
    Shopera T, He L, Oyetunde T, Tang YJ, Moon TS (2017) Decoupling resource-coupled gene expression in living cells. ACS Synth Biol 6(8):1596–1604PubMedGoogle Scholar
  26. 26.
    Darlington APS, Kim J, Jiménez JI, Bates DG (2018) Dynamic allocation of orthogonal ribosomes facilitates uncoupling of co-expressed genes. Nat Commun 9:695PubMedPubMedCentralGoogle Scholar
  27. 27.
    Rugbjerg P, Sarup-Lytzen K, Nagy M, Sommer MOA (2018) Synthetic addiction extends the productive life time of engineered Escherichia coli populations. Proc Natl Acad Sci 115(10):2347–2352PubMedGoogle Scholar
  28. 28.
    Ceroni F, Boo A, Furini S, Gorochowski TE, Borkowski O, Ladak YN, Awan AR, Gilbert C, Stan G-B, Ellis T (2018) Burden-driven feedback control of gene expression. Nat Methods 15(5):387PubMedGoogle Scholar
  29. 29.
    Gyorgy A, Jiménez JI, Yazbek J, Huang H-H, Chung H, Weiss R, Del Vecchio D (2015) Isocost lines describe the cellular economy of genetic circuits. Biophys J 109(3):639–646PubMedPubMedCentralGoogle Scholar
  30. 30.
    Carbonell-Ballestero M, Garcia-Ramallo E, Montañez R, Rodriguez-Caso C, Macía J (2015) Dealing with the genetic load in bacterial synthetic biology circuits: convergences with the ohm’s law. Nucleic Acids Res 44(1):496–507PubMedPubMedCentralGoogle Scholar
  31. 31.
    Gorochowski TE, Avcilar-Kucukgoze I, Bovenberg RA, Roubos JA, Ignatova Z (2016) A minimal model of ribosome allocation dynamics captures trade-offs in expression between endogenous and synthetic genes. ACS Synth Biol 5(7):710–720PubMedGoogle Scholar
  32. 32.
    Karr JR, Sanghvi JC, Macklin DN, Gutschow MV, Jacobs JM, Bolival Jr B, Assad-Garcia N, Glass JI, Covert MW (2012) A whole-cell computational model predicts phenotype from genotype. Cell 150(2):389–401PubMedPubMedCentralGoogle Scholar
  33. 33.
    Purcell O, Jain B, Karr JR, Covert MW, Lu TK (2013) Towards a whole-cell modeling approach for synthetic biology. Chaos 23(2):025112PubMedPubMedCentralGoogle Scholar
  34. 34.
    Klumpp S, Zhang Z, Hwa T (2009) Growth rate-dependent global effects on gene expression in bacteria. Cell 139:1366–1375PubMedPubMedCentralGoogle Scholar
  35. 35.
    Weiße AY, Oyarzún DA, Danos V, Swain PS (2015) Mechanistic links between cellular trade-offs, gene expression, and growth. Proc Natl Acad Sci 112(9):E1038–E1047PubMedGoogle Scholar
  36. 36.
    Liao C, Blanchard AE, Lu T (2017) An integrative circuit–host modelling framework for predicting synthetic gene network behaviours. Nat. Microbiol. 2(12):1658PubMedGoogle Scholar
  37. 37.
    Thomas P, Terradot G, Danos V, Weiße AY (2018) Sources, propagation and consequences of stochasticity in cellular growth. Nat Commun 9(1):1–11Google Scholar
  38. 38.
    Nikolados E-M, Weiße AY, Ceroni F, Oyarzún DA (2019) Growth defects and loss-of-function in synthetic gene circuits. ACS Synth Biol 8(6):1231–1240PubMedGoogle Scholar
  39. 39.
    O’Brien EJ, Lerman JA, Chang RL, Hyduke DR, Palsson B (2013) Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction. Mol Syst Biol 9:693PubMedPubMedCentralGoogle Scholar
  40. 40.
    Carrera J, Covert MW (2015) Why build whole-cell models? Trends Cell Biol 25(12):719–722PubMedPubMedCentralGoogle Scholar
  41. 41.
    Karr JR, Takahashi K, Funahashi A (2015) The principles of whole-cell modeling. Curr Opin Microbiol 27:18–24PubMedGoogle Scholar
  42. 42.
    O’Brien EJ, Monk JM, Palsson BO (2015) Using genome-scale models to predict biological capabilities Cell 161(5):971–987PubMedPubMedCentralGoogle Scholar
  43. 43.
    Monod J (1949) The growth of bacterial cultures. Ann Rev Microbiol 3(1):371–394Google Scholar
  44. 44.
    Schaechter M, Maaløe O, Kjeldgaard NO (1958) Dependency on medium and temperature of cell size and chemical composition during balanced growth of Salmonella typhimurium. Microbiology 19(3):592–606Google Scholar
  45. 45.
    Neidhardt FC, Magasanik B (1960) Studies on the role of ribonucleic acid in the growth of bacteria. Biochim Biophys Acta 42:99–116PubMedGoogle Scholar
  46. 46.
    Dennis PP, Ehrenberg M, Bremer H (2004) Control of rRNA synthesis in Escherichia coli: a systems biology approach. Microbiol Mol Biol Rev 68(4):639–668PubMedPubMedCentralGoogle Scholar
  47. 47.
    Maaløe O (1979) Regulation of the protein-synthesizing machinery—ribosomes, tRNA, factors, and so on. In: Biological Regulation and Development, pp. 487–542. Springer, New York (1979)Google Scholar
  48. 48.
    Bremer H, Dennis PP, et al (1996) Modulation of chemical composition and other parameters of the cell by growth rate. EcoSal Cell Mol Biol 2(2):1553–1569Google Scholar
  49. 49.
    Maitra A, Dill KA (2015) Bacterial growth laws reflect the evolutionary importance of energy efficiency. Proc Natl Acad Sci 112(2):406–411PubMedGoogle Scholar
  50. 50.
    Bosdriesz E, Molenaar D, Teusink B, Bruggeman FJ (2015) How fast-growing bacteria robustly tune their ribosome concentration to approximate growth-rate maximization. FEBS J 282(10):2029–2044PubMedPubMedCentralGoogle Scholar
  51. 51.
    Molenaar D, Van Berlo R, De Ridder D, Teusink B (2009) Shifts in growth strategies reflect tradeoffs in cellular economics. Mol Syst Biol 5(1):323PubMedPubMedCentralGoogle Scholar
  52. 52.
    Russell JB, Cook GM (1995) Energetics of bacterial growth: balance of anabolic and catabolic reactions. Microbiol Mol Biol Rev 59(1):48–62Google Scholar
  53. 53.
    McGinness KE, Baker TA, Sauer RT (2006) Engineering controllable protein degradation. Mol Cell 22(5):701–707PubMedGoogle Scholar
  54. 54.
    Vind J, Sørensen MA, Rasmussen MD, Pedersen S (1993) Synthesis of proteins in Escherichia coli is limited by the concentration of free ribosomes: expression from reporter genes does not always reflect functional mRNA levels. J Mol Biol 231(3):678–688PubMedGoogle Scholar
  55. 55.
    Dong H, Nilsson L, Kurland CG (1995) Gratuitous overexpression of genes in Escherichia coli leads to growth inhibition and ribosome destruction. J Bacteriol 177(6):1497–1504PubMedPubMedCentralGoogle Scholar
  56. 56.
    Lim WA (2010) Designing customized cell signalling circuits. Nat Rev Mol Cell Biol 11(6):393PubMedPubMedCentralGoogle Scholar
  57. 57.
    Khalil AS, Collins JJ (2010) Synthetic biology: applications come of age. Nat Rev Genet 11(5):367PubMedPubMedCentralGoogle Scholar
  58. 58.
    Joshi N, Wang X, Montgomery L, Elfick A, French C (2009) Novel approaches to biosensors for detection of arsenic in drinking water. Desalination 248(1–3):517–523Google Scholar
  59. 59.
    Paitan Y, Biran I, Shechter N, Biran D, Rishpon J, Ron EZ (2004) Monitoring aromatic hydrocarbons by whole cell electrochemical biosensors. Anal Biochem 335(2):175–183PubMedGoogle Scholar
  60. 60.
    Saeidi N, Wong CK, Lo T-M, Nguyen HX, Ling H, Leong SSJ, Poh CL, Chang MW (2011) Engineering microbes to sense and eradicate Pseudomonas aeruginosa, a human pathogen. Mol Syst Biol 7(1):521PubMedPubMedCentralGoogle Scholar
  61. 61.
    Wang B, Kitney RI, Joly N, Buck M (2011) Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology. Nat Commun 2:508PubMedPubMedCentralGoogle Scholar
  62. 62.
    Hartline CJ, Mannan AA, Liu D, Zhang F, Oyarzún DA (2020) Metabolite sequestration enables rapid recovery from fatty acid depletion in Escherichia coli. mBio 11:e03112–e03119Google Scholar
  63. 63.
    Cambray G, Guimaraes JC, Arkin AP (2018) Evaluation of 244,000 synthetic sequences reveals design principles to optimize translation in Escherichia coli. Nat Biotechnol 36(10):1005PubMedGoogle Scholar
  64. 64.
    Borkowski O, Bricio C, Murgiano M, Rothschild-Mancinelli B, Stan GB, Ellis T (2018) Cell-free prediction of protein expression costs for growing cells. Nat Commun 9(1):1457PubMedPubMedCentralGoogle Scholar
  65. 65.
    Liu D, Mannan AA, Han Y, Oyarzún DA, Zhang F (2018) Dynamic metabolic control: towards precision engineering of metabolism. J Ind Microbiol Biotechnol 45:535–543PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2021

Authors and Affiliations

  1. 1.School of Biological SciencesUniversity of EdinburghEdinburghUK
  2. 2.School of InformaticsUniversity of EdinburghEdinburghUK

Personalised recommendations