Skip to main content

Optimal Experimental Design for Systems and Synthetic Biology Using AMIGO2

  • Protocol
  • First Online:
Synthetic Gene Circuits

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2229))

Abstract

Dynamic modeling in systems and synthetic biology is still quite a challenge—the complex nature of the interactions results in nonlinear models, which include unknown parameters (or functions). Ideally, time-series data support the estimation of model unknowns through data fitting. Goodness-of-fit measures would lead to the best model among a set of candidates. However, even when state-of-the-art measuring techniques allow for an unprecedented amount of data, not all data suit dynamic modeling.

Model-based optimal experimental design (OED) is intended to improve model predictive capabilities. OED can be used to define the set of experiments that would (a) identify the best model or (b) improve the identifiability of unknown parameters. In this chapter, we present a detailed practical procedure to compute optimal experiments using the AMIGO2 toolbox.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jaqaman K, Danuser G (2006) Linking data to models: data regression. Nat Rev Mol Cell Biol 7(11):813–819

    Article  CAS  Google Scholar 

  2. Balsa-Canto E, Alonso AA, Banga JR (2008) Computational procedures for optimal experimental design in biological systems. IET Syst Biol 2(4):163–172

    Article  CAS  Google Scholar 

  3. Kreutz C, Timmer J (2009) Systems biology: experimental design. FEBS J 276(4):923–942

    Article  CAS  Google Scholar 

  4. Walter E, Pronzato L (1997) Identification of parametric models from experimental data. Springer

    Google Scholar 

  5. Quarteroni A, Sacco R, Saleri F (2000) Numerical mathematics. Springer-Verlag, New York

    Google Scholar 

  6. Fletcher R (1987) Practical methods of optimization. Wiley, Chichester

    Google Scholar 

  7. Seber GAF, Wild CJ (1989) Nonlinear regression. Wiley series in probability and mathematical statistics. Wiley, New York

    Google Scholar 

  8. Schittkowski K (2002) Numerical data fitting in dynamical systems. Kluwer, Dordrecht

    Book  Google Scholar 

  9. Fröhlich F, Kaltenbacher B, Theis FJ, Hasenauer J (2017) Scalable parameter estimation for genome-scale biochemical reaction networks. PLoS Comp Biol 13(1):e1005331

    Article  Google Scholar 

  10. Balsa-Canto E, Banga JR, Alonso AA, Vassiliadis VS (2002) Restricted second order information for the solution of optimal control problems using control vector parameterization. J Proc Cont 12(2):243–255

    Google Scholar 

  11. Lin Y, Stadtherr MA (2006) Deterministic global optimization for parameter estimation of dynamic systems. Ind Eng Chem Res 45:8438–8448

    Article  CAS  Google Scholar 

  12. Polisetty P, Voit E, Gatzke E (2006) Identification of metabolic system parameters using global optimization methods. Theor Biol Med Model 3:4

    Article  Google Scholar 

  13. Balsa-Canto E, Vassiliadis VS, Banga JR (2005) Dynamic optimization of single- and multi-stage systems using a hybrid stochastic-deterministic method. Ind Eng Chem Res 44(5):1514–1523

    Article  CAS  Google Scholar 

  14. Rodriguez-Fernandez M, Mendes P, Banga JR (2006) A hybrid approach for efficient and robust parameter estimation in biochemical pathways. Biosystems 83(2–3):248–265

    Article  CAS  Google Scholar 

  15. Villaverde AF, Fröhlich F, Weindl D, Hasenauer J, Banga JR (2019) Benchmarking optimization methods for parameter estimation in large kinetic models. Bioinformatics 35(5):830–838

    Article  CAS  Google Scholar 

  16. Egea JA, Balsa-Canto E, García M-SG, Banga JR (2009) Dynamic optimization of nonlinear processes with an enhanced scatter search method. Ind Eng Chem Res 48(9):4388–4401

    Article  CAS  Google Scholar 

  17. Egea JA, Martí R, Banga JR (2010) An evolutionary method for complex-process optimization. Comp Oper Res 37(2):315–324

    Article  Google Scholar 

  18. Balsa-Canto E, Henriques D, Gabor A, Banga JR (2016) AMIGO2, a toolbox for dynamic modeling, optimization and control in systems biology. Bioinformatics 32(21):3357–3359

    Article  CAS  Google Scholar 

  19. Vassiliadis VS, Sargent RWH, Pantelides CC (1994) Solution of a class of multi-stage dynamic optimization problems: 1, problems without path constraints, 2, problems with path constraints. Ind Eng Chem Res 33(2111–2122):2123–2133

    Article  CAS  Google Scholar 

  20. Gnugge R, Dharmarajan L, Lang M, Stelling J (2016) An orthogonal permease–inducer–repressor feedback loop shows bistability. ACS Synth Biol 5:1098–1107

    Article  CAS  Google Scholar 

  21. Bandiera L, Hou Z, Kothamachu V, Balsa-Canto E, Swain P, Menolascina F (2018) On-line optimal input design increases the efficiency and accuracy of the modelling of an inducible synthetic promoter. Processes 6(9):148

    Article  CAS  Google Scholar 

  22. Storn R, Price K (1997) Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the Spanish Ministry of Science, Innovation and Universities and the European Union FEDER (project grant RTI2018-093744-B-C33). This work was also supported by a Royal Society of Edinburgh-MoST grant, EPSRC grant EP/R035350/1 and EP/S001921/1 to Dr. Menolascina, and the EPSRC grant EP/P017134/1-CONDSYC to Dr. Bandiera.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Balsa-Canto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Balsa-Canto, E., Bandiera, L., Menolascina, F. (2021). Optimal Experimental Design for Systems and Synthetic Biology Using AMIGO2. In: Menolascina, F. (eds) Synthetic Gene Circuits . Methods in Molecular Biology, vol 2229. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1032-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1032-9_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1031-2

  • Online ISBN: 978-1-0716-1032-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics