Skip to main content

Advantages and Limitations of Cre Mouse Lines Used in Skeletal Research

  • Protocol
  • First Online:
Skeletal Development and Repair

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2230))

Abstract

The Cre-LoxP technology permits gene ablation in specific cell lineages, at chosen differentiation stages of this lineage and in an inducible manner. It has allowed tremendous advances in our understanding of skeleton biology and related pathophysiological mechanisms, through the generation of loss/gain of function or cell tracing experiments based on the creation of an expanding toolbox of transgenic mice expressing the Cre recombinase in skeletal stem cells, chondrocytes, osteoblasts, or osteoclasts. In this chapter, we provide an overview of the different Cre-LoxP systems and Cre mouse lines used in the bone field, we discuss their advantages, limitations, and we outline best practices to interpret results obtained from the use of Cre mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lewandoski M (2001) Conditional control of gene expression in the mouse. Nat Rev Genet 2:743–755. https://doi.org/10.1038/35093537

    Article  CAS  PubMed  Google Scholar 

  2. Metzger D, Clifford J, Chiba H, Chambon P (1995) Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc Natl Acad Sci U S A 92:6991–6995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang Y, Spatz MK, Kannan K, Hayk H, Avivi A, Gorivodsky M, Pines M, Yayon A, Lonai P, Givol D (1999) A mouse model for achondroplasia produced by targeting fibroblast growth factor receptor 3. Proc Natl Acad Sci U S A 96:4455–4460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fedde KN, Blair L, Silverstein J, Coburn SP, Ryan LM, Weinstein RS, Waymire K, Narisawa S, Millán JL, MacGregor GR, Whyte MP (1999) Alkaline phosphatase knock-out mice recapitulate the metabolic and skeletal defects of infantile hypophosphatasia. J Bone Miner Res 14:2015–2026. https://doi.org/10.1359/jbmr.1999.14.12.2015

    Article  CAS  PubMed  Google Scholar 

  5. International Mouse Knockout Consortium, Collins FS, Rossant J, Wurst W (2007) A mouse for all reasons. Cell 128:9–13. https://doi.org/10.1016/j.cell.2006.12.018

    Article  CAS  Google Scholar 

  6. Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P (1996) Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci U S A 93:10887–10890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sauer B, Henderson N (1988) Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci U S A 85:5166–5170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Andrews BJ, Proteau GA, Beatty LG, Sadowski PD (1985) The FLP recombinase of the 2 micron circle DNA of yeast: interaction with its target sequences. Cell 40:795–803

    Article  CAS  PubMed  Google Scholar 

  9. Schönhuber N, Seidler B, Schuck K, Veltkamp C, Schachtler C, Zukowska M, Eser S, Feyerabend TB, Paul MC, Eser P, Klein S, Lowy AM, Banerjee R, Yang F, Lee C-L, Moding EJ, Kirsch DG, Scheideler A, Alessi DR, Varela I, Bradley A, Kind A, Schnieke AE, Rodewald H-R, Rad R, Schmid RM, Schneider G, Saur D (2014) A next-generation dual-recombinase system for time- and host-specific targeting of pancreatic cancer. Nat Med 20:1340–1347. https://doi.org/10.1038/nm.3646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Birling M-C, Gofflot F, Warot X (2009) Site-specific recombinases for manipulation of the mouse genome. Methods Mol Biol 561:245–263. https://doi.org/10.1007/978-1-60327-019-9_16

    Article  CAS  PubMed  Google Scholar 

  11. Nagy A (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26:99–109

    Article  CAS  PubMed  Google Scholar 

  12. St-Onge L, Furth PA, Gruss P (1996) Temporal control of the Cre recombinase in transgenic mice by a tetracycline responsive promoter. Nucleic Acids Res 24:3875–3877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Baron U, Bujard H (2000) Tet repressor-based system for regulated gene expression in eukaryotic cells: principles and advances. Methods Enzymol 327:401–421

    Article  CAS  PubMed  Google Scholar 

  14. Bockamp E, Maringer M, Spangenberg C, Fees S, Fraser S, Eshkind L, Oesch F, Zabel B (2002) Of mice and models: improved animal models for biomedical research. Physiol Genomics 11:115–132. https://doi.org/10.1152/physiolgenomics.00067.2002

    Article  CAS  PubMed  Google Scholar 

  15. Brocard J, Feil R, Chambon P, Metzger D (1998) A chimeric Cre recombinase inducible by synthetic, but not by natural ligands of the glucocorticoid receptor. Nucleic Acids Res 26:4086–4090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kühn R, Schwenk F, Aguet M, Rajewsky K (1995) Inducible gene targeting in mice. Science 269:1427–1429

    Article  PubMed  Google Scholar 

  17. Metzger D, Chambon P (2001) Site- and time-specific gene targeting in the mouse. Methods 24:71–80. https://doi.org/10.1006/meth.2001.1159

    Article  CAS  PubMed  Google Scholar 

  18. Feil R, Wagner J, Metzger D, Chambon P (1997) Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 237:752–757. https://doi.org/10.1006/bbrc.1997.7124

    Article  CAS  PubMed  Google Scholar 

  19. Danielian PS, Muccino D, Rowitch DH, Michael SK, McMahon AP (1998) Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr Biol 8:1323–1326

    Article  CAS  PubMed  Google Scholar 

  20. Littlewood TD, Hancock DC, Danielian PS, Parker MG, Evan GI (1995) A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res 23:1686–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 89:5547–5551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Furth PA, St Onge L, Böger H, Gruss P, Gossen M, Kistner A, Bujard H, Hennighausen L (1994) Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc Natl Acad Sci U S A 91:9302–9306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cox BC, Dearman JA, Brancheck J, Zindy F, Roussel MF, Zuo J (2014) Generation of Atoh1-rtTA transgenic mice: a tool for inducible gene expression in hair cells of the inner ear. Sci Rep 4:6885. https://doi.org/10.1038/srep06885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rodda SJ, McMahon AP (2006) Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 133:3231–3244. https://doi.org/10.1242/dev.02480

    Article  CAS  PubMed  Google Scholar 

  25. Grover J, Roughley PJ (2006) Generation of a transgenic mouse in which Cre recombinase is expressed under control of the type II collagen promoter and doxycycline administration. Matrix Biol 25:158–165. https://doi.org/10.1016/j.matbio.2005.11.003

    Article  CAS  PubMed  Google Scholar 

  26. Jareborg N, Birney E, Durbin R (1999) Comparative analysis of noncoding regions of 77 orthologous mouse and human gene pairs. Genome Res 9:815–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang SH, Bergo MO, Farber E, Qiao X, Fong LG, Young SG (2009) Caution! Analyze transcripts from conditional knockout alleles. Transgenic Res 18:483–489. https://doi.org/10.1007/s11248-008-9237-9

    Article  CAS  PubMed  Google Scholar 

  28. protocol4_cko_design.pdf

    Google Scholar 

  29. Rashid H, Chen H, Hassan Q, Javed A (2017) Dwarfism in homozygous Agc1CreERT mice is associated with decreased expression of aggrecan. Genesis 55(10):10.1002/dvg.23070. https://doi.org/10.1002/dvg.23070

  30. Buerger A, Rozhitskaya O, Sherwood MC, Dorfman AL, Bisping E, Abel ED, Pu WT, Izumo S, Jay PY (2006) Dilated cardiomyopathy resulting from high-level myocardial expression of Cre-recombinase. J Card Fail 12:392–398. https://doi.org/10.1016/j.cardfail.2006.03.002

    Article  CAS  PubMed  Google Scholar 

  31. Hall ME, Smith G, Hall JE, Stec DE (2011) Systolic dysfunction in cardiac-specific ligand-inducible MerCreMer transgenic mice. Am J Physiol Heart Circ Physiol 301:H253–H260. https://doi.org/10.1152/ajpheart.00786.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Koitabashi N, Danner T, Zaiman AL, Pinto YM, Rowell J, Mankowski J, Zhang D, Nakamura T, Takimoto E, Kass DA (2011) Pivotal role of cardiomyocyte TGF-β signaling in the murine pathological response to sustained pressure overload. J Clin Invest 121:2301–2312. https://doi.org/10.1172/JCI44824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bersell K, Choudhury S, Mollova M, Polizzotti BD, Ganapathy B, Walsh S, Wadugu B, Arab S, Kühn B (2013) Moderate and high amounts of tamoxifen in αMHC-MerCreMer mice induce a DNA damage response, leading to heart failure and death. Dis Model Mech 6:1459–1469. https://doi.org/10.1242/dmm.010447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Forni PE, Scuoppo C, Imayoshi I, Taulli R, Dastrù W, Sala V, Betz UAK, Muzzi P, Martinuzzi D, Vercelli AE, Kageyama R, Ponzetto C (2006) High levels of Cre expression in neuronal progenitors cause defects in brain development leading to microencephaly and hydrocephaly. J Neurosci 26:9593–9602. https://doi.org/10.1523/JNEUROSCI.2815-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Takebayashi H, Usui N, Ono K, Ikenaka K (2008) Tamoxifen modulates apoptosis in multiple modes of action in CreER mice. Genesis 46:775–781. https://doi.org/10.1002/dvg.20461

    Article  CAS  PubMed  Google Scholar 

  36. Naiche LA, Papaioannou VE (2007) Cre activity causes widespread apoptosis and lethal anemia during embryonic development. Genesis 45:768–775. https://doi.org/10.1002/dvg.20353

    Article  CAS  PubMed  Google Scholar 

  37. Loonstra A, Vooijs M, Beverloo HB, Allak BA, van Drunen E, Kanaar R, Berns A, Jonkers J (2001) Growth inhibition and DNA damage induced by Cre recombinase in mammalian cells. Proc Natl Acad Sci U S A 98:9209–9214. https://doi.org/10.1073/pnas.161269798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mähönen AJ, Airenne KJ, Lind MM, Lesch HP, Ylä-Herttuala S (2004) Optimized self-excising Cre-expression cassette for mammalian cells. Biochem Biophys Res Commun 320:366–371. https://doi.org/10.1016/j.bbrc.2004.05.175

    Article  CAS  PubMed  Google Scholar 

  39. Huang W, Olsen BR (2015) Skeletal defects in Osterix-Cre transgenic mice. Transgenic Res 24:167–172. https://doi.org/10.1007/s11248-014-9828-6

    Article  CAS  PubMed  Google Scholar 

  40. Wang L, Mishina Y, Liu F (2015) Osterix-Cre transgene causes craniofacial bone development defect. Calcif Tissue Int 96:129–137. https://doi.org/10.1007/s00223-014-9945-5

    Article  CAS  PubMed  Google Scholar 

  41. Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K (2008) Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov 7:678–693. https://doi.org/10.1038/nrd2619

    Article  CAS  PubMed  Google Scholar 

  42. Thyagarajan B, Guimarães MJ, Groth AC, Calos MP (2000) Mammalian genomes contain active recombinase recognition sites. Gene 244:47–54

    Article  CAS  PubMed  Google Scholar 

  43. Semprini S, Troup TJ, Kotelevtseva N, King K, Davis JRE, Mullins LJ, Chapman KE, Dunbar DR, Mullins JJ (2007) Cryptic loxP sites in mammalian genomes: genome-wide distribution and relevance for the efficiency of BAC/PAC recombineering techniques. Nucleic Acids Res 35:1402–1410. https://doi.org/10.1093/nar/gkl1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Abremski K, Hoess R (1985) Phage P1 Cre-loxP site-specific recombination. Effects of DNA supercoiling on catenation and knotting of recombinant products. J Mol Biol 184:211–220

    Article  CAS  PubMed  Google Scholar 

  45. Abremski K, Frommer B, Wierzbicki A, Hoess RH (1988) Properties of a mutant Cre protein that alters the topological linkage of recombination products. J Mol Biol 202:59–66

    Article  CAS  PubMed  Google Scholar 

  46. Sauer B (1992) Identification of cryptic lox sites in the yeast genome by selection for Cre-mediated chromosome translocations that confer multiple drug resistance. J Mol Biol 223:911–928

    Article  CAS  PubMed  Google Scholar 

  47. Couasnay G, Frey C, Elefteriou F (2019) Promoter Cre-specific genotyping assays for authentication of Cre-driver mouse lines. JBMR Plus 3(4):e10128. https://doi.org/10.1002/jbm4.10128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Araki K, Imaizumi T, Okuyama K, Oike Y, Yamamura K (1997) Efficiency of recombination by Cre transient expression in embryonic stem cells: comparison of various promoters. J Biochem 122:977–982

    Article  CAS  PubMed  Google Scholar 

  49. Long MA, Rossi FMV (2009) Silencing inhibits Cre-mediated recombination of the Z/AP and Z/EG reporters in adult cells. PLoS One 4:e5435. https://doi.org/10.1371/journal.pone.0005435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schulz TJ, Glaubitz M, Kuhlow D, Thierbach R, Birringer M, Steinberg P, Pfeiffer AFH, Ristow M (2007) Variable expression of Cre recombinase transgenes precludes reliable prediction of tissue-specific gene disruption by tail-biopsy genotyping. PLoS One 2:e1013. https://doi.org/10.1371/journal.pone.0001013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Birge SJ, McEwen BS, Wise PM (2001) Effects of estrogen deficiency on brain function. Implications for the treatment of postmenopausal women. Postgrad Med Spec No:11–16

    Google Scholar 

  52. Huh WJ, Khurana SS, Geahlen JH, Kohli K, Waller RA, Mills JC (2012) Tamoxifen induces rapid, reversible atrophy, and metaplasia in mouse stomach. Gastroenterology 142:21.e7–24.e7. https://doi.org/10.1053/j.gastro.2011.09.050

    Article  CAS  Google Scholar 

  53. Phillips DH, Carmichael PL, Hewer A, Cole KJ, Hardcastle IR, Poon GK, Keogh A, Strain AJ (1996) Activation of tamoxifen and its metabolite alpha-hydroxytamoxifen to DNA-binding products: comparisons between human, rat and mouse hepatocytes. Carcinogenesis 17:89–94

    Article  CAS  PubMed  Google Scholar 

  54. Stearns V, Gelmann EP (1998) Does tamoxifen cause cancer in humans? J Clin Oncol 16:779–792. https://doi.org/10.1200/JCO.1998.16.2.779

    Article  CAS  PubMed  Google Scholar 

  55. Kim LA, Amarnani D, Gnanaguru G, Tseng WA, Vavvas DG, D’Amore PA (2014) Tamoxifen toxicity in cultured retinal pigment epithelial cells is mediated by concurrent regulated cell death mechanisms. Invest Ophthalmol Vis Sci 55:4747–4758. https://doi.org/10.1167/iovs.13-13662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. McHaffie SL, Hastie ND, Chau Y-Y (2016) Effects of CreERT2, 4-OH tamoxifen, and gender on CFU-F assays. PLoS One 11:e0148105. https://doi.org/10.1371/journal.pone.0148105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Powell WF, Barry KJ, Tulum I, Kobayashi T, Harris SE, Bringhurst FR, Pajevic PD (2011) Targeted ablation of the PTH/PTHrP receptor in osteocytes impairs bone structure and homeostatic calcemic responses. J Endocrinol 209:21–32. https://doi.org/10.1530/JOE-10-0308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Henry SP, Jang C-W, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B (2009) Generation of aggrecan-CreERT2 knockin mice for inducible Cre activity in adult cartilage. Genesis 47:805–814. https://doi.org/10.1002/dvg.20564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Maes C, Kobayashi T, Selig MK, Torrekens S, Roth SI, Mackem S, Carmeliet G, Kronenberg HM (2010) Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell 19:329–344. https://doi.org/10.1016/j.devcel.2010.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen M, Lichtler AC, Sheu T-J, Xie C, Zhang X, O’Keefe RJ, Chen D (2007) Generation of a transgenic mouse model with chondrocyte-specific and tamoxifen-inducible expression of Cre recombinase. Genesis 45:44–50. https://doi.org/10.1002/dvg.20261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kiermayer C, Conrad M, Schneider M, Schmidt J, Brielmeier M (2007) Optimization of spatiotemporal gene inactivation in mouse heart by oral application of tamoxifen citrate. Genesis 45:11–16. https://doi.org/10.1002/dvg.20244

    Article  CAS  PubMed  Google Scholar 

  62. Fowlkes JL, Nyman JS, Bunn RC, Cockrell GE, Wahl EC, Rettiganti MR, Lumpkin CK, Thrailkill KM (2015) Effects of long-term doxycycline on bone quality and strength in diabetic male DBA/2J mice. Bone Rep 1:16–19. https://doi.org/10.1016/j.bonr.2014.10.001

    Article  PubMed  PubMed Central  Google Scholar 

  63. do Nascimento Gomes K, APNN A, PGP D, de GSB V (2017) Doxycycline induces bone repair and changes in Wnt signalling. Int J Oral Sci 9:158–166. https://doi.org/10.1038/ijos.2017.28

    Article  CAS  Google Scholar 

  64. Lewis AE, Vasudevan HN, O’Neill AK, Soriano P, Bush JO (2013) The widely used Wnt1-Cre transgene causes developmental phenotypes by ectopic activation of Wnt signaling. Dev Biol 379:229–234. https://doi.org/10.1016/j.ydbio.2013.04.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Soeda T, Deng JM, de Crombrugghe B, Behringer RR, Nakamura T, Akiyama H (2010) Sox9-expressing precursors are the cellular origin of the cruciate ligament of the knee joint and the limb tendons. Genesis 48:635–644. https://doi.org/10.1002/dvg.20667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sakai K, Hiripi L, Glumoff V, Brandau O, Eerola R, Vuorio E, Bösze Z, Fässler R, Aszódi A (2001) Stage-and tissue-specific expression of a Col2a1-Cre fusion gene in transgenic mice. Matrix Biol 19:761–767

    Article  CAS  PubMed  Google Scholar 

  67. Long F, Zhang XM, Karp S, Yang Y, McMahon AP (2001) Genetic manipulation of hedgehog signaling in the endochondral skeleton reveals a direct role in the regulation of chondrocyte proliferation. Development 128:5099–5108

    CAS  PubMed  Google Scholar 

  68. Chen J, Shi Y, Regan J, Karuppaiah K, Ornitz DM, Long F (2014) Osx-Cre targets multiple cell types besides osteoblast lineage in postnatal mice. PLoS One 9:e85161. https://doi.org/10.1371/journal.pone.0085161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Park J-S, Baek W-Y, Kim YH, Kim J-E (2011) In vivo expression of Osterix in mature granule cells of adult mouse olfactory bulb. Biochem Biophys Res Commun 407:842–847. https://doi.org/10.1016/j.bbrc.2011.03.129

    Article  CAS  PubMed  Google Scholar 

  70. Scheller EL, Leinninger GM, Hankenson KD, Myers MG, Krebsbach PH (2011) Ectopic expression of Col2.3 and Col3.6 promoters in the brain and association with leptin signaling. Cells Tissue Org 194:268–273. https://doi.org/10.1159/000324745

    Article  CAS  Google Scholar 

  71. Lim J, Burclaff J, He G, Mills JC, Long F (2017) Unintended targeting of Dmp1-Cre reveals a critical role for Bmpr1a signaling in the gastrointestinal mesenchyme of adult mice. Bone Res 5:16049. https://doi.org/10.1038/boneres.2016.49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Orthgiess J, Gericke M, Immig K, Schulz A, Hirrlinger J, Bechmann I, Eilers J (2016) Neurons exhibit Lyz2 promoter activity in vivo: implications for using LysM-Cre mice in myeloid cell research. Eur J Immunol 46:1529–1532. https://doi.org/10.1002/eji.201546108

    Article  CAS  PubMed  Google Scholar 

  73. Seime T, Kolind M, Mikulec K, Summers MA, Cantrill L, Little DG, Schindeler A (2015) Inducible cell labeling and lineage tracking during fracture repair. Develop Growth Differ 57:10–23. https://doi.org/10.1111/dgd.12184

    Article  CAS  Google Scholar 

  74. He Y, Sun X, Wang L, Mishina Y, Guan J-L, Liu F (2017) Male germline recombination of a conditional allele by the widely used Dermo1-cre (Twist2-cre) transgene Genesis 55(9):10.1002/dvg.23048. https://doi.org/10.1002/dvg.23048

  75. Logan M, Martin JF, Nagy A, Lobe C, Olson EN, Tabin CJ (2002) Expression of Cre recombinase in the developing mouse limb bud driven by a Prxl enhancer. Genesis 33:77–80. https://doi.org/10.1002/gene.10092

    Article  CAS  PubMed  Google Scholar 

  76. Liu F, Woitge HW, Braut A, Kronenberg MS, Lichtler AC, Mina M, Kream BE (2004) Expression and activity of osteoblast-targeted Cre recombinase transgenes in murine skeletal tissues. Int J Dev Biol 48:645–653. https://doi.org/10.1387/ijdb.041816fl

    Article  CAS  PubMed  Google Scholar 

  77. Winkeler CL, Kladney RD, Maggi LB, Weber JD (2012) Cathepsin K-Cre causes unexpected germline deletion of genes in mice. PLoS One 7:e42005. https://doi.org/10.1371/journal.pone.0042005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Liu J, Willet SG, Bankaitis ED, Xu Y, Wright CVE, Gu G (2013) Non-parallel recombination limits Cre-LoxP-based reporters as precise indicators of conditional genetic manipulation. Genesis 51:436–442. https://doi.org/10.1002/dvg.22384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kopp H-G, Hooper AT, Shmelkov SV, Rafii S (2007) Beta-galactosidase staining on bone marrow. The osteoclast pitfall. Histol Histopathol 22:971–976. https://doi.org/10.14670/HH-22.971

    Article  CAS  PubMed  Google Scholar 

  80. Odgren PR, MacKay CA, Mason-Savas A, Yang M, Mailhot G, Birnbaum MJ (2006) False-positive beta-galactosidase staining in osteoclasts by endogenous enzyme: studies in neonatal and month-old wild-type mice. Connect Tissue Res 47:229–234. https://doi.org/10.1080/03008200600860086

    Article  PubMed  Google Scholar 

  81. Prentice AI (1967) Autofluorescence of bone tissues. J Clin Pathol 20:717–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tahaei SE, Couasnay G, Ma Y, Paria N, Gu J, Lemoine BF, Wang X, Rios JJ, Elefteriou F (2018) The reduced osteogenic potential of Nf1-deficient osteoprogenitors is EGFR-independent. Bone 106:103–111. https://doi.org/10.1016/j.bone.2017.10.012

    Article  CAS  PubMed  Google Scholar 

  83. de la Croix NJ, Makowski AJ, Uppuganti S, Vignaux G, Ono K, Perrien DS, Joubert S, Baglio SR, Granchi D, Stevenson DA, Rios JJ, Nyman JS, Elefteriou F (2015) Corrigendum: asfotase-α improves bone growth, mineralization and strength in mouse models of neurofibromatosis type-1. Nat Med 21:414. https://doi.org/10.1038/nm0415-414c

    Article  CAS  Google Scholar 

  84. Eroshenko N, Church GM (2013) Mutants of Cre recombinase with improved accuracy. Nat Commun 4:2509. https://doi.org/10.1038/ncomms3509

    Article  CAS  PubMed  Google Scholar 

  85. Silver DP, Livingston DM (2001) Self-excising retroviral vectors encoding the Cre recombinase overcome Cre-mediated cellular toxicity. Mol Cell 8:233–243

    Article  CAS  PubMed  Google Scholar 

  86. Hirrlinger J, Requardt RP, Winkler U, Wilhelm F, Schulze C, Hirrlinger PG (2009) Split-CreERT2: temporal control of DNA recombination mediated by split-Cre protein fragment complementation. PLoS One 4:e8354. https://doi.org/10.1371/journal.pone.0008354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Casanova E, Lemberger T, Fehsenfeld S, Mantamadiotis T, Schütz G (2003) Alpha complementation in the Cre recombinase enzyme. Genesis 37:25–29. https://doi.org/10.1002/gene.10227

    Article  CAS  PubMed  Google Scholar 

  88. Seidi A, Mie M, Kobatake E (2007) Novel recombination system using Cre recombinase alpha complementation. Biotechnol Lett 29:1315–1322. https://doi.org/10.1007/s10529-007-9406-6

    Article  CAS  PubMed  Google Scholar 

  89. Tainaka K, Kuno A, Kubota SI, Murakami T, Ueda HR (2016) Chemical principles in tissue clearing and staining protocols for whole-body cell profiling. Annu Rev Cell Dev Biol 32:713–741. https://doi.org/10.1146/annurev-cellbio-111315-125001

    Article  CAS  PubMed  Google Scholar 

  90. Park D, Spencer JA, Lin CP, Scadden DT (2014) Sequential in vivo imaging of osteogenic stem/progenitor cells during fracture repair. J Vis Exp. https://doi.org/10.3791/51289

  91. Yu K, Xu J, Liu Z, Sosic D, Shao J, Olson EN, Towler DA, Ornitz DM (2003) Conditional inactivation of FGF receptor 2 reveals an essential role for FGF signaling in the regulation of osteoblast function and bone growth. Development 130:3063–3074

    Article  CAS  PubMed  Google Scholar 

  92. Kawanami A, Matsushita T, Chan YY, Murakami S (2009) Mice expressing GFP and CreER in osteochondro progenitor cells in the periosteum. Biochem Biophys Res Commun 386:477–482. https://doi.org/10.1016/j.bbrc.2009.06.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. DeFalco J, Tomishima M, Liu H, Zhao C, Cai X, Marth JD, Enquist L, Friedman JM (2001) Virus-assisted mapping of neural inputs to a feeding center in the hypothalamus. Science 291:2608–2613. https://doi.org/10.1126/science.1056602

    Article  CAS  PubMed  Google Scholar 

  94. Zhou BO, Yu H, Yue R, Zhao Z, Rios JJ, Naveiras O, Morrison SJ (2017) Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF. Nat Cell Biol 19:891–903. https://doi.org/10.1038/ncb3570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhou BO, Yue R, Murphy MM, Peyer JG, Morrison SJ (2014) Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15:154–168. https://doi.org/10.1016/j.stem.2014.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Park D, Spencer JA, Koh BI, Kobayashi T, Fujisaki J, Clemens TL, Lin CP, Kronenberg HM, Scadden DT (2012) Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell 10:259–272. https://doi.org/10.1016/j.stem.2012.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Grcevic D, Pejda S, Matthews BG, Repic D, Wang L, Li H, Kronenberg MS, Jiang X, Maye P, Adams DJ, Rowe DW, Aguila HL, Kalajzic I (2012) In vivo fate mapping identifies mesenchymal progenitor cells. Stem Cells 30:187–196. https://doi.org/10.1002/stem.780

    Article  CAS  PubMed  Google Scholar 

  98. Akiyama H, Kim J-E, Nakashima K, Balmes G, Iwai N, Deng JM, Zhang Z, Martin JF, Behringer RR, Nakamura T, de Crombrugghe B (2005) Osteo-chondroprogenitor cells are derived from Sox9 expressing precursors. Proc Natl Acad Sci U S A 102:14665–14670. https://doi.org/10.1073/pnas.0504750102

    Article  CAS  PubMed  Google Scholar 

  99. Worthley DL, Churchill M, Compton JT, Tailor Y, Rao M, Si Y, Levin D, Schwartz MG, Uygur A, Hayakawa Y, Gross S, Renz BW, Setlik W, Martinez AN, Chen X, Nizami S, Lee HG, Kang HP, Caldwell J-M, Asfaha S, Westphalen CB, Graham T, Jin G, Nagar K, Wang H, Kheirbek MA, Kolhe A, Carpenter J, Glaire M, Nair A, Renders S, Manieri N, Muthupalani S, Fox JG, Reichert M, Giraud AS, Schwabe RF, Pradere J-P, Walton K, Prakash A, Gumucio D, Rustgi AK, Stappenbeck TS, Friedman RA, Gershon MD, Sims P, Grikscheit T, Lee FY, Karsenty G, Mukherjee S, Wang TC (2015) Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential. Cell 160:269–284. https://doi.org/10.1016/j.cell.2014.11.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tan SH, Senarath-Yapa K, Chung MT, Longaker MT, Wu JY, Nusse R (2014) Wnts produced by Osterix-expressing osteolineage cells regulate their proliferation and differentiation. Proc Natl Acad Sci U S A 111:E5262–E5271. https://doi.org/10.1073/pnas.1420463111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. van Amerongen R, Bowman AN, Nusse R (2012) Developmental stage and time dictate the fate of Wnt/β-catenin-responsive stem cells in the mammary gland. Cell Stem Cell 11:387–400. https://doi.org/10.1016/j.stem.2012.05.023

    Article  CAS  PubMed  Google Scholar 

  102. Ovchinnikov DA, Deng JM, Ogunrinu G, Behringer RR (2000) Col2a1-directed expression of Cre recombinase in differentiating chondrocytes in transgenic mice. Genesis 26:145–146

    Article  CAS  PubMed  Google Scholar 

  103. Terpstra L, Prud’homme J, Arabian A, Takeda S, Karsenty G, Dedhar S, St-Arnaud R (2003) Reduced chondrocyte proliferation and chondrodysplasia in mice lacking the integrin-linked kinase in chondrocytes. J Cell Biol 162:139–148. https://doi.org/10.1083/jcb.200302066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Haigh JJ, Gerber HP, Ferrara N, Wagner EF (2000) Conditional inactivation of VEGF-A in areas of collagen2a1 expression results in embryonic lethality in the heterozygous state. Development 127:1445–1453

    CAS  PubMed  Google Scholar 

  105. Nakamura E, Nguyen M-T, Mackem S (2006) Kinetics of tamoxifen-regulated Cre activity in mice using a cartilage-specific CreER(T) to assay temporal activity windows along the proximodistal limb skeleton. Dev Dyn 235:2603–2612. https://doi.org/10.1002/dvdy.20892

    Article  CAS  PubMed  Google Scholar 

  106. Hilton MJ, Tu X, Long F (2007) Tamoxifen-inducible gene deletion reveals a distinct cell type associated with trabecular bone, and direct regulation of PTHrP expression and chondrocyte morphology by Ihh in growth region cartilage. Dev Biol 308:93–105. https://doi.org/10.1016/j.ydbio.2007.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yang G, Cui F, Hou N, Cheng X, Zhang J, Wang Y, Jiang N, Gao X, Yang X (2005) Transgenic mice that express Cre recombinase in hypertrophic chondrocytes. Genesis 42:33–36. https://doi.org/10.1002/gene.20120

    Article  CAS  PubMed  Google Scholar 

  108. Kim Y, Murao H, Yamamoto K, Deng JM, Behringer RR, Nakamura T, Akiyama H (2011) Generation of transgenic mice for conditional overexpression of Sox9. J Bone Miner Metab 29:123–129. https://doi.org/10.1007/s00774-010-0206-z

    Article  CAS  PubMed  Google Scholar 

  109. Gebhard S, Hattori T, Bauer E, Schlund B, Bösl MR, de Crombrugghe B, von der Mark K (2008) Specific expression of Cre recombinase in hypertrophic cartilage under the control of a BAC-Col10a1 promoter. Matrix Biol 27:693–699. https://doi.org/10.1016/j.matbio.2008.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yang L, Tsang KY, Tang HC, Chan D, Cheah KSE (2014) Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation. Proc Natl Acad Sci U S A 111:12097–12102. https://doi.org/10.1073/pnas.1302703111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rountree RB, Schoor M, Chen H, Marks ME, Harley V, Mishina Y, Kingsley DM (2004) BMP receptor signaling is required for postnatal maintenance of articular cartilage. PLoS Biol 2:e355. https://doi.org/10.1371/journal.pbio.0020355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kozhemyakina E, Zhang M, Ionescu A, Ayturk UM, Ono N, Kobayashi A, Kronenberg H, Warman ML, Lassar AB (2015) Identification of a Prg4-expressing articular cartilage progenitor cell population in mice. Arthritis Rheumatol 67:1261–1273. https://doi.org/10.1002/art.39030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rauch A, Seitz S, Baschant U, Schilling AF, Illing A, Stride B, Kirilov M, Mandic V, Takacz A, Schmidt-Ullrich R, Ostermay S, Schinke T, Spanbroek R, Zaiss MM, Angel PE, Lerner UH, David J-P, Reichardt HM, Amling M, Schütz G, Tuckermann JP (2010) Glucocorticoids suppress bone formation by attenuating osteoblast differentiation via the monomeric glucocorticoid receptor. Cell Metab 11:517–531. https://doi.org/10.1016/j.cmet.2010.05.005

    Article  CAS  PubMed  Google Scholar 

  114. Dacquin R, Starbuck M, Schinke T, Karsenty G (2002) Mouse alpha1(I)-collagen promoter is the best known promoter to drive efficient Cre recombinase expression in osteoblast. Dev Dyn 224:245–251. https://doi.org/10.1002/dvdy.10100

    Article  CAS  PubMed  Google Scholar 

  115. Zhang M, Xuan S, Bouxsein ML, von Stechow D, Akeno N, Faugere MC, Malluche H, Zhao G, Rosen CJ, Efstratiadis A, Clemens TL (2002) Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization. J Biol Chem 277:44005–44012. https://doi.org/10.1074/jbc.M208265200

    Article  CAS  PubMed  Google Scholar 

  116. Yoshikawa Y, Kode A, Xu L, Mosialou I, Silva BC, Ferron M, Clemens TL, Economides AN, Kousteni S (2011) Genetic evidence points to an osteocalcin-independent influence of osteoblasts on energy metabolism. J Bone Miner Res 26:2012–2025. https://doi.org/10.1002/jbmr.417

    Article  CAS  PubMed  Google Scholar 

  117. Bivi N, Condon KW, Allen MR, Farlow N, Passeri G, Brun LR, Rhee Y, Bellido T, Plotkin LI (2012) Cell autonomous requirement of connexin 43 for osteocyte survival: consequences for endocortical resorption and periosteal bone formation. J Bone Miner Res 27:374–389. https://doi.org/10.1002/jbmr.548

    Article  CAS  PubMed  Google Scholar 

  118. Kalajzic I, Braut A, Guo D, Jiang X, Kronenberg MS, Mina M, Harris MA, Harris SE, Rowe DW (2004) Dentin matrix protein 1 expression during osteoblastic differentiation, generation of an osteocyte GFP-transgene. Bone 35:74–82. https://doi.org/10.1016/j.bone.2004.03.006

    Article  CAS  PubMed  Google Scholar 

  119. Lu Y, Xie Y, Zhang S, Dusevich V, Bonewald LF, Feng JQ (2007) DMP1-targeted Cre expression in odontoblasts and osteocytes. J Dent Res 86:320–325. https://doi.org/10.1177/154405910708600404

    Article  CAS  PubMed  Google Scholar 

  120. Xiong J, Piemontese M, Onal M, Campbell J, Goellner JJ, Dusevich V, Bonewald L, Manolagas SC, O’Brien CA (2015) Osteocytes, not osteoblasts or lining cells, are the main source of the RANKL required for osteoclast formation in remodeling bone. PLoS One 10:e0138189. https://doi.org/10.1371/journal.pone.0138189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Chiu WSM, McManus JF, Notini AJ, Cassady AI, Zajac JD, Davey RA (2004) Transgenic mice that express Cre recombinase in osteoclasts. Genesis 39:178–185. https://doi.org/10.1002/gene.20041

    Article  CAS  PubMed  Google Scholar 

  122. Sanchez-Fernandez MA, Sbacchi S, Correa-Tapia M, Naumann R, Klemm J, Chambon P, Al-Robaiy S, Blessing M, Hoflack B (2012) Transgenic mice for a tamoxifen-induced, conditional expression of the Cre recombinase in osteoclasts. PLoS One 7:e37592. https://doi.org/10.1371/journal.pone.0037592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Clausen BE, Burkhardt C, Reith W, Renkawitz R, Förster I (1999) Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res 8:265–277

    Article  CAS  PubMed  Google Scholar 

  124. Ferron M, Vacher J (2005) Targeted expression of Cre recombinase in macrophages and osteoclasts in transgenic mice. Genesis 41:138–145. https://doi.org/10.1002/gene.20108

    Article  CAS  PubMed  Google Scholar 

  125. Maeda K, Kobayashi Y, Udagawa N, Uehara S, Ishihara A, Mizoguchi T, Kikuchi Y, Takada I, Kato S, Kani S, Nishita M, Marumo K, Martin TJ, Minami Y, Takahashi N (2012) Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis. Nat Med 18:405–412. https://doi.org/10.1038/nm.2653

    Article  CAS  PubMed  Google Scholar 

  126. Hobeika E, Thiemann S, Storch B, Jumaa H, Nielsen PJ, Pelanda R, Reth M (2006) Testing gene function early in the B cell lineage in mb1-cre mice. Proc Natl Acad Sci U S A 103:13789–13794. https://doi.org/10.1073/pnas.0605944103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the National Institute of Health (RO1AG055394, R21AR072483) and the Department of Defense (GRANT12693412).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florent Elefteriou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Elefteriou, F., Couasnay, G. (2021). Advantages and Limitations of Cre Mouse Lines Used in Skeletal Research. In: Hilton, M.J. (eds) Skeletal Development and Repair. Methods in Molecular Biology, vol 2230. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1028-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1028-2_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1027-5

  • Online ISBN: 978-1-0716-1028-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics