Abstract
The osteoclast is the unique type of cell that resorbs bone in vivo and it is required for normal skeletal development and postnatal homeostasis. Osteoclast deficiency impairs skeletal development during embryogenesis and results in osteopetrosis and impaired tooth eruption. In contrast, excessive osteoclast formation in adults results in bone loss in a number of conditions, including osteoporosis, rheumatoid arthritis, and metastatic bone disease. Osteoclasts are derived from monocytes/macrophages; they can be generated in vitro by treatment of these precursor cells with macrophage colony stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL). This chapter describes procedures for generating osteoclasts from mouse bone marrow cells in vitro using M-CSF and RANKL and assessing their ability to form resorption lacunae on thin bone slices.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Holtrop ME, Raisz LG, Simmons HA (1974) The effects of parathyroid hormone, colchicine, and calcitonin on the ultrastructure and the activity of osteoclasts in organ culture. J Cell Biol 60:346–355
Ash P, Loutit JF, Townsend KM (1980) Osteoclasts derived from haematopoietic stem cells. Nature 283:669–670
Testa NG, Allen TD, Lajtha LG, Onions D, Jarret O (1981) Generation of osteoclasts in vitro. J Cell Sci 47:127–137
Allen TD, Testa NG, Suda T, Schor SL, Onions D, Jarrett O, Boyde A (1981) The production of putative osteoclasts in tissue culture - ultrastructure, formation and behavior. Scan Electron Microsc 347–354
Ibbotson KJ, Roodman GD, McManus LM, Mundy GR (1984) Identification and characterization of osteoclast-like cells and their progenitors in cultures of feline marrow mononuclear cells. J Cell Biol 99:471–480
Roodman GD, Ibbotson KJ, MacDonald BR, Kuehl TJ, Mundy GR (1985) 1,25-Dihydroxyvitamin D3 causes formation of multinucleated cells with several osteoclast characteristics in cultures of primate marrow. Proc Natl Acad Sci U S A 82:8213–8217
Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176
Wong BR, Rho J, Arron J, Robinson E, Orlinick J, Chao M, Kalachikov S, Cayani E, Bartlett FS 3rd, Frankel WN, Lee SY, Choi Y (1997) TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J Biol Chem 272:25190–25194
Bradley EW, Oursler MJ (2008) Osteoclast culture and resorption assays. Methods Mol Biol 455:19–35
Yao Z, Xing L, Boyce BF (2009) NF-kappaB p100 limits TNF-induced bone resorption in mice by a TRAF3-dependent mechanism. J Clin Invest 119:3024–3034
Yamashita T, Yao Z, Li F, Zhang Q, Badell IR, Schwarz EM, Takeshita S, Wagner EF, Noda M, Matsuo K, Xing L, Boyce BF (2007) NF-kappaB p50 and p52 regulate receptor activator of NF-kappaB ligand (RANKL) and tumor necrosis factor-induced osteoclast precursor differentiation by activating c-Fos and NFATc1. J Biol Chem 282:18245–18253
Yao Z, Li P, Zhang Q, Schwarz EM, Keng P, Arbini A, Boyce BF, Xing L (2006) Tumor necrosis factor-alpha increases circulating osteoclast precursor numbers by promoting their proliferation and differentiation in the bone marrow through up-regulation of c-Fms expression. J Biol Chem 281:11846–11855
Acknowledgments
This work was supported by the following NIH Grants: AR043510 RO1 from NIAMS; AG059775 RO1 and AG049994 from NIA.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Yao, Z., Xing, L., Boyce, B.F. (2021). RANKL-Based Osteoclastogenic Assay from Murine Bone Marrow Cells. In: Hilton, M.J. (eds) Skeletal Development and Repair. Methods in Molecular Biology, vol 2230. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1028-2_29
Download citation
DOI: https://doi.org/10.1007/978-1-0716-1028-2_29
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-0716-1027-5
Online ISBN: 978-1-0716-1028-2
eBook Packages: Springer Protocols