Skip to main content

Detection of Genetic Rearrangements in the Regulators of Complement Activation RCA Cluster by High-Throughput Sequencing and MLPA

  • Protocol
  • First Online:
The Complement System

Abstract

The regulators of complement activation (RCA) gene cluster in 1q31-1q32 includes most of the genes encoding complement regulatory proteins. Genetic variability in the RCA gene cluster frequently involve copy number variations (CNVs), a type of chromosome structural variation causing alterations in the number of copies of specific regions of DNA. CNVs in the RCA gene cluster often relate with gene rearrangements that result in the generation of novel genes, carrying internal duplications or deletions, and hybrid genes, resulting from the fusion or exchange of genetic material between two different genes. These gene rearrangements are strongly associated with a number of rare and common diseases characterized by complement dysregulation. Identification of CNVs in the RCA gene cluster is critical in the molecular diagnostic of these diseases. It can be done by bioinformatics analysis of DNA sequence data generated by massive parallel sequencing techniques (NGS, next generation sequencing) but often requires special techniques like multiplex ligation-dependent probe amplification (MLPA). This is because the currently used massive parallel DNA sequencing approaches do not easily identify all the structural variations in the RCA gene cluster. We will describe here how to use the MLPA assays and two computational tools to analyze NGS data, NextGENe and ONCOCNV, to detect CNVs and gene rearrangements in the RCA gene cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rodríguez De Córdoba S, Díaz-Guillén MA, Heine-Suñer D (1999) An integrated map of the human regulator of complement activation (RCA) gene cluster on 1q32. Mol Immunol 36:803–808. https://doi.org/10.1016/S0161-5890(99)00100-5

    Article  PubMed  Google Scholar 

  2. Lambert J-C, Heath S, Even G et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 41:1094–1099. https://doi.org/10.1038/ng.439

    Article  CAS  PubMed  Google Scholar 

  3. Venables JP, Strain L, Routledge D et al (2006) Atypical haemolytic uraemic syndrome associated with a hybrid complement gene. PLoS Med 3:e431. https://doi.org/10.1371/journal.pmed.0030431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Valoti E, Alberti M, Tortajada A et al (2014) A novel atypical hemolytic uremic syndrome-associated hybrid CFHR1/CFH gene encoding a fusion protein that antagonizes factor H-dependent complement regulation. J Am Soc Nephrol 26:209–219. https://doi.org/10.1681/ASN.2013121339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Francis NJ, McNicholas B, Awan A et al (2012) A novel hybrid CFH/CFHR3 gene generated by a microhomology-mediated deletion in familial atypical hemolytic uremic syndrome. Blood 119:591–601. https://doi.org/10.1182/blood-2011-03-339903

    Article  CAS  PubMed  Google Scholar 

  6. Goicoechea de Jorge E, Tortajada A, Pinto García S et al (2018) Factor H competitor generated by gene conversion events associates with atypical hemolytic uremic syndrome. J Am Soc Nephrol 29:1–10. https://doi.org/10.1681/ASN.2017050518

    Article  Google Scholar 

  7. Gharavi AG, Kiryluk K, Choi M et al (2012) Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat Genet 43:321–327. https://doi.org/10.1038/ng.787.Genome-wide

    Article  Google Scholar 

  8. Hughes AE, Orr N, Esfandiary H et al (2006) A common CFH haplotype, with deletion of CFHR1 and CFHR3, is associated with lower risk of age-related macular degeneration. Nat Genet 38:1173–1177. https://doi.org/10.1038/ng1890

    Article  CAS  PubMed  Google Scholar 

  9. Tortajada A, Yébenes H, Abarrategui-Garrido C et al (2013) C3 glomerulopathy–associated CFHR1 mutation alters FHR oligomerization and complement regulation. J Clin Invest 123:2434–2446. https://doi.org/10.1172/JCI68280DS1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Krych-Goldberg M, Atkinson JP (2001) Structure-function relationships of complement receptor type 1. Immunol Rev 180:112–122

    Article  CAS  Google Scholar 

  11. Liu D, Niu ZX (2009) The structure, genetic polymorphisms, expression and biological functions of complement receptor type 1 (CR1/CD35). Immunopharmacol Immunotoxicol 31:524–535. https://doi.org/10.3109/08923970902845768

    Article  CAS  PubMed  Google Scholar 

  12. Klickstein LB, Wong WW, Smith JA et al (1987) HUMAN C3b/C4b RECEPTOR (CR1) demonstration of long homologous repeating domains that are composed of the short consensus repeats characteristic of C3/C4 binding proteins. J Exp Med 165:1095–1112. https://doi.org/10.1084/jem.165.4.1095

    Article  CAS  PubMed  Google Scholar 

  13. Rodriguez de Cordoba S, Rubinstein P (1986) Quantitative variations of the C3b/C4b receptor (CR1) in human erythrocytes are controlled by genes within the regulator of complement activation (RCA) gene cluster. J Exp Med 164:1274–1283. https://doi.org/10.1084/jem.164.4.1274

    Article  CAS  PubMed  Google Scholar 

  14. Brouwers N, Van Cauwenberghe C, Engelborghs S et al (2012) Alzheimer risk associated with a copy number variation in the complement receptor 1 increasing C3b/C4b binding sites. Mol Psychiatry 17:223–233. https://doi.org/10.1038/mp.2011.24

    Article  CAS  PubMed  Google Scholar 

  15. Kisserli A, Tabary T, Cohen JHM et al (2017) High-resolution melting PCR for complement receptor 1 length polymorphism genotyping: an innovative tool for Alzheimer’s disease gene susceptibility assessment. J Vis Exp 125:1–11. https://doi.org/10.3791/56012

    Article  CAS  Google Scholar 

  16. Rodriguez de Cordoba S, Hidalgo MS, Pinto S, Tortajada A (2014) Genetics of atypical hemolytic uremic syndrome (aHUS). Semin Thromb Hemost 40:422–430. https://doi.org/10.1055/s-0034-1375296

    Article  CAS  PubMed  Google Scholar 

  17. Józsi M, Tortajada A, Uzonyi B et al (2015) Factor H-related proteins determine complement-activating surfaces. Trends Immunol 36:374–384. https://doi.org/10.1016/j.it.2015.04.008

    Article  CAS  PubMed  Google Scholar 

  18. Pérez-Caballero D, González-Rubio C, Gallardo ME et al (2001) Clustering of missense mutations in the C-terminal region of factor H in atypical hemolytic uremic syndrome. Am J Hum Genet 68:478–484. https://doi.org/10.1086/318201

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tortajada A, Gutiérrez E, Goicoechea de Jorge E et al (2017) Elevated factor H–related protein 1 and factor H pathogenic variants decrease complement regulation in IgA nephropathy. Kidney Int 92:953–963. https://doi.org/10.1016/j.kint.2017.03.041

    Article  CAS  PubMed  Google Scholar 

  20. Zhao J, Wu H, Khosravi M et al (2011) Association of genetic variants in complement factor H and factor H-related genes with systemic lupus erythematosus susceptibility. PLoS Genet 7:1–9. https://doi.org/10.1371/journal.pgen.1002079

    Article  CAS  Google Scholar 

  21. Abarrategui-Garrido C, Martínez-Barricarte R, López-Trascasa M et al (2009) Characterization of complement factor H-related (CFHR) proteins in plasma reveals novel genetic variations of CFHR1 associated with atypical hemolytic uremic syndrome. Blood 114:4261–4271. https://doi.org/10.1182/blood-2009-05-223834

    Article  CAS  PubMed  Google Scholar 

  22. Jodele S, Licht C, Goebel J et al (2013) Abnormalities in the alternative pathway of complement in children with hematopoietic stem cell transplant-associated thrombotic microangiopathy. Blood 122:2003–2007. https://doi.org/10.1182/blood-2013-05-501445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moore I, Strain L, Pappworth I et al (2010) Association of factor H autoantibodies with deletions of CFHR1, CFHR3, CFHR4, and with mutations in CFH, CFI, CD46, and C3 in patients with atypical hemolytic uremic syndrome. Blood 115:379–387. https://doi.org/10.1182/blood-2009-05-221549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zipfel PF, Edey M, Heinen S et al (2007) Deletion of complement factor H-related genes CFHR1 and CFHR3 is associated with atypical hemolytic uremic syndrome. PLoS Genet 3:0387–0392. https://doi.org/10.1371/journal.pgen.0030041

    Article  CAS  Google Scholar 

  25. Eyler SJ, Meyer NC, Zhang Y et al (2013) A novel hybrid CFHR1/CFH gene causes atypical hemolytic uremic syndrome. Pediatr Nephrol 28(11):2221–2225. https://doi.org/10.1007/s00467-013-2560-2

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chen Q, Wiesener M, Eberhardt HU et al (2014) Complement factor H-related hybrid protein deregulates complement in dense deposit disease. J Clin Invest 124:145–155. https://doi.org/10.1172/JCI71866

    Article  CAS  PubMed  Google Scholar 

  27. Malik TH, Lavin PJ, Goicoechea de Jorge E et al (2012) A hybrid CFHR3-1 gene causes familial C3 glomerulopathy. J Am Soc Nephrol 23:1155–1160. https://doi.org/10.1681/ASN.2012020166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xiao X, Ghossein C, Tortajada A et al (2016) Familial C3 glomerulonephritis caused by a novel CFHR5-CFHR2 fusion gene. Mol Immunol 77:89–96. https://doi.org/10.1016/j.molimm.2016.07.007

    Article  CAS  PubMed  Google Scholar 

  29. Gale DP, Goicoechea de Jorge E, Cook HT et al (2010) Identification of a mutation in complement factor H-related protein 5 in patients of Cypriot origin with glomerulonephritis. Lancet 376:794–801. https://doi.org/10.1016/S0140-6736(10)60670-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Medjeral-Thomas N, Malik TH, Patel MP et al (2014) A novel CFHR5 fusion protein causes C3 glomerulopathy in a family without Cypriot ancestry. Kidney Int 85:933–937. https://doi.org/10.1038/ki.2013.348

    Article  CAS  PubMed  Google Scholar 

  31. Togarsimalemath SK, Sethi SK, Duggal R et al (2017) A novel CFHR1-CFHR5 hybrid leads to a familial dominant C3 glomerulopathy. Kidney Int 92:876–887. https://doi.org/10.1016/j.kint.2017.04.025

    Article  CAS  PubMed  Google Scholar 

  32. Boeva V, Popova T, Lienard M et al (2014) Multi-factor data normalization enables the detection of copy number aberrations in amplicon sequencing data. Bioinformatics 30:3443–3450. https://doi.org/10.1093/bioinformatics/btu436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang H, Nettleton D, Ying K (2014) Copy number variation detection using next generation sequencing read counts. BMC Bioinformatics 15:109. https://doi.org/10.1186/1471-2105-15-109

    Article  PubMed  PubMed Central  Google Scholar 

  34. Malekpour SA, Pezeshk H, Sadeghi M (2018) MSeq-CNV: accurate detection of copy number variation from sequencing of multiple samples. Sci Rep 8:1–12. https://doi.org/10.1038/s41598-018-22323-8

    Article  CAS  Google Scholar 

  35. Samorodnitsky E, Datta J, Jewell BM et al (2015) Comparison of custom capture for targeted next-generation DNA sequencing. J Mol Diagn 17:64–75. https://doi.org/10.1016/j.jmoldx.2014.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Samorodnitsky E, Jewell BM, Hagopian R et al (2015) Evaluation of hybridization capture versus amplicon-based methods for whole-exome sequencing. Hum Mutat 36:903–914. https://doi.org/10.1002/humu.22825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

SRdeC is supported by the Spanish “Ministerio de Economía y Competitividad-FEDER” (SAF2015-66287R, PID2019-104912RB-I00, RTC-2016-4635-1 and the Autonomous Region of Madrid (S2017/BMD-3673). Secugen has received a soft loan from the Spanish “Ministerio de Economía y Competitividad” Retos Program RTC-2016-4635-1 cofinanced by FEDER funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Rodríguez de Córdoba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

García-Fernández, J., Vilches-Arroyo, S., Olavarrieta, L., Pérez-Pérez, J., Rodríguez de Córdoba, S. (2021). Detection of Genetic Rearrangements in the Regulators of Complement Activation RCA Cluster by High-Throughput Sequencing and MLPA. In: Roumenina, L.T. (eds) The Complement System. Methods in Molecular Biology, vol 2227. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1016-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1016-9_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1015-2

  • Online ISBN: 978-1-0716-1016-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics