Skip to main content

Generating Ins2+/−/miR-133aTg Mice to Model miRNA-Driven Cardioprotection of Human Diabetic Heart

  • Protocol
  • First Online:
Mouse Genetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2224))

Abstract

Diabetes mellitus (DM) is caused either due to insulin deficiency (T1DM) or insulin resistance (T2DM). DM increases the risk of heart failure by diabetic cardiomyopathy (DMCM), a cardiac muscle disorder that leads to a progressive decline in diastolic function, and ultimately systolic dysfunction. Mouse models of T1DM and T2DM exhibit clinical signs of DMCM. Growing evidence implicates microRNA (miRNA), an endogenous, non-coding, regulatory RNA, in the pathogenesis and signaling of DMCM. Therefore, inhibiting deleterious miRNAs and mimicking cardioprotective miRNAs could provide a potential therapeutic intervention for DMCM. miRNA-133a (miR-133a) is a highly abundant miRNA in the human heart. It is a cardioprotective miRNA, which is downregulated in the DM heart. It has anti-hypertrophic and anti-fibrotic effects. miR-133a mimic treatment after the onset of early DMCM can reverse histological and clinical signs of the disease in mice. We hypothesized that overexpression of cardiac-specific miR-133a in Ins2+/− Akita (T1DM) mice can prevent progression of DMCM. Here, we describe a method to create and validate cardiac-specific Ins2+/−/miR-133aTg mice to determine whether cardiac-specific miR-133a overexpression prevents development of DMCM. These strategies demonstrate the value of genetic modeling of human disease such as DMCM and evaluate the potential of miRNA as a therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boudina S, Abel ED (2010) Diabetic cardiomyopathy, causes and effects. Rev Endocr Metab Disord 11(1):31–39

    Article  Google Scholar 

  2. Bugger H, Abel ED (2014) Molecular mechanisms of diabetic cardiomyopathy. Diabetologia 57:660–671

    Article  CAS  Google Scholar 

  3. Kannel WB, Hjortland M, Castelli WP (1974) Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol 34(1):29–34

    Article  CAS  Google Scholar 

  4. Kasznicki J, Drzewoski J (2014) Heart failure in the diabetic population-pathophysiology, diagnosis and management. Arch Med Sci 10(3):546–556

    Article  Google Scholar 

  5. Nichols GA, Gullion CM, Koro CE et al (2004) The incidence of congestive heart failure in type 2 diabetes: an update. Diabetes Care 27:1879–1884

    Article  Google Scholar 

  6. Badole SL, Jangam GB (2014) Animal models of diabetic cardiomyopathy. Elsevier Inc., Amsterdam

    Google Scholar 

  7. Wang J, Takeuchi T, Tanaka S et al (1999) A mutation in the insulin 2 gene induces diabetes with severe pancreatic β-cell dysfunction in the Mody mouse. J Clin Invest 103(1):27–37

    Article  CAS  Google Scholar 

  8. Ross SA, Gulve EA, Wang M (2004) Chemistry and biochemistry of type 2 diabetes. Chem Rev 104(3):1255–1282

    Article  CAS  Google Scholar 

  9. Coleman DL (1978) Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia 14(3):141–148

    Article  CAS  Google Scholar 

  10. Fuentes-Antras J, Picatoste B, Gomez-Hernandez A et al (2015) Updating experimental models of diabetic cardiomyopathy. J Diabetes Res 2015:656795

    Article  CAS  Google Scholar 

  11. Nandi SS, Shahshahan HR, Shang Q et al (2018) MiR-133a mimic alleviates T1DM-induced systolic dysfunction in Akita: an MRI-based study. Front Physiol 9:1–11

    Article  Google Scholar 

  12. Yoshioka M, Kayo T, Ikeda T, Koizuni A (1997) A novel locus, Mody4, Distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice. Diabetes 46(5):887–894

    Article  CAS  Google Scholar 

  13. Basu R, Oudit GY, Wang X et al (2009) Type 1 diabetic cardiomyopathy in the Akita (Ins2WT/C96Y) mouse model is characterized by lipotoxicity and diastolic dysfunction with preserved systolic function. Am J Physiol Circ Physiol 297(6):H2096–H2108

    Article  CAS  Google Scholar 

  14. Kesherwani V, Shahshahan HR, Mishra PK (2017) Cardiac transcriptome profiling of diabetic Akita mice using microarray and next generation sequencing. PLoS One 12(8):1–17

    Article  Google Scholar 

  15. Chavali V, Tyagi SC, Mishra PK (2013) Predictors and prevention of diabetic cardiomyopathy. Diabetes Metab Syndr Obes 6:151–160

    PubMed  PubMed Central  Google Scholar 

  16. Chavali V, Tyagi SC, Mishra PK (2014) Differential Expression of Dicer, miRNAs, and Inflammatory Markers in Diabetic Ins2+/− Akita Hearts. Cell Biochem Biophys 68(1):25–35

    Article  CAS  Google Scholar 

  17. Nandi SS, Zheng H, Sharma NM et al (2016) Lack of MIR-133a decreases contractility of diabetic hearts: A role for novel cross talk between tyrosine aminotransferase and tyrosine hydroxylase. Diabetes 65(10):3075–3090

    Article  CAS  Google Scholar 

  18. Rosengren A, Jing X, Eliasson L, Renström E (2008) Why treatment fails in type 2 diabetes. PLoS Med 5(10):1426–1427

    Article  Google Scholar 

  19. Hong EG, Dae YJ, Hwi JK et al (2007) Nonobese, insulin-deficient Ins2Akita mice develop type 2 diabetes phenotypes including insulin resistance and cardiac remodeling. Am J Physiol Endocrinol Metab 293(6):E1687–E1696

    Article  CAS  Google Scholar 

  20. Mishra PK, Tyagi N, Kumar M, Tyagi SC (2009) MicroRNAs as a therapeutic target for cardiovascular diseases. J Cell Mol Med 13(4):778–789

    Article  CAS  Google Scholar 

  21. Guo R, Nair S (2017) Role of microRNA in diabetic cardiomyopathy: From mechanism to intervention. Biochim Biophys Acta Mol basis Dis 1863(8):2070–2077

    Article  CAS  Google Scholar 

  22. Leptidis S, el Azzouzi H, Lok SI et al (2013) A deep sequencing approach to uncover the miRNOME in the human heart. PLoS One 8(2):e57800

    Article  CAS  Google Scholar 

  23. Carè A, Catalucci D, Felicetti F et al (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13(5):613–618

    Article  Google Scholar 

  24. VanderKaay S, Letts L, Jung B, Moll SE (2020) Doing what’s right: a grounded theory of ethical decision-making in occupational therapy. Scand J Occup Ther 27(2):98–111

    Article  Google Scholar 

  25. Chen S, Puthanveetil P, Feng B et al (2014) Cardiac miR-133a overexpression prevents early cardiac fibrosis in diabetes. J Cell Mol Med 18(3):415–421

    Article  CAS  Google Scholar 

  26. Matkovich SJ, Wang W, Tu Y et al (2010) MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circ Res 106(1):166–175

    Article  CAS  Google Scholar 

  27. Truett GE, Heeger P, Mynatt RL et al (2000) Preparation of PCR-quality mouse genomic dna with hot sodium hydroxide and tris (HotSHOT). BioTechniques 29(1):52–54. https://doi.org/10.2144/00291bm09

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported, in part, by the National Institutes of Health grants HL-113281 and HL-116205 to Paras K. Mishra. We greatly appreciate Dr. Scot Matkovich from the Washington University, St. Louis for his kind gift of cardiac-specific miR-133aTg mice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paras K. Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shahshahan, H.R., Kambis, T.N., Kar, S., Yadav, S.K., Mishra, P.K. (2021). Generating Ins2+/−/miR-133aTg Mice to Model miRNA-Driven Cardioprotection of Human Diabetic Heart. In: Singh, S.R., Hoffman, R.M., Singh, A. (eds) Mouse Genetics . Methods in Molecular Biology, vol 2224. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1008-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1008-4_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1007-7

  • Online ISBN: 978-1-0716-1008-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics