Skip to main content

Linear Density Sucrose Gradients to Study Mitoribosomal Biogenesis in Tissue-Specific Knockout Mice

  • Protocol
  • First Online:
Mouse Genetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2224))

Abstract

Like bacterial and cytoplasmic ribosomes, mitoribosomes are large ribonucleoprotein complexes with molecular weights in the range of several million Daltons. Traditionally, studying the assembly of such high molecular weight complexes is done using ultracentrifugation through linear density gradients, which remains the method of choice due to its versatility and superior resolving power in the high molecular weight range. Here, we present a protocol for the analysis of mitoribosomal assembly in heart mitochondrial extracts using linear density sucrose gradients that we have previously employed to characterize the essential role of different mitochondrial proteins in mitoribosomal biogenesis. This protocol details in a stepwise manner a typical mitoribosomal assembly analysis starting with isolation of mitochondria, preparation and ultracentrifugation of the gradients, fractionation and ending with SDS-PAGE, and immunoblotting of the gradient fractions. Even though we provide an example with heart mitochondria, this protocol can be directly applied to virtually all mouse tissues, as well as cultured cells, with little to no modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown A, Amunts A, Bai XC, Sugimoto Y et al (2014) Structure of the large ribosomal subunit from human mitochondria. Science 346(6210):718–722. https://doi.org/10.1126/science.1258026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Greber BJ, Boehringer D, Leibundgut M, Bieri P et al (2014) The complete structure of the large subunit of the mammalian mitochondrial ribosome. Nature 515(7526):283–286. https://doi.org/10.1038/nature13895

    Article  CAS  PubMed  Google Scholar 

  3. Kaushal PS, Sharma MR, Booth TM, Haque EM et al (2014) Cryo-EM structure of the small subunit of the mammalian mitochondrial ribosome. Proc Natl Acad Sci U S A 111(20):7284–7289. https://doi.org/10.1073/pnas.1401657111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Amunts A, Brown A, Toots J, Scheres SH et al (2015) Ribosome. The structure of the human mitochondrial ribosome. Science 348(6230):95–98. https://doi.org/10.1126/science.aaa1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Greber BJ, Bieri P, Leibundgut M, Leitner A et al (2015) Ribosome. The complete structure of the 55S mammalian mitochondrial ribosome. Science 348(6232):303–308. https://doi.org/10.1126/science.aaa3872

    Article  CAS  PubMed  Google Scholar 

  6. Rorbach J, Gao F, Powell CA, D’Souza A et al (2016) Human mitochondrial ribosomes can switch their structural RNA composition. Proc Natl Acad Sci U S A 113(43):12198–12201. https://doi.org/10.1073/pnas.1609338113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chrzanowska-Lightowlers Z, Rorbach J, Minczuk M (2017) Human mitochondrial ribosomes can switch structural tRNAs - but when and why? RNA Biol 14(12):1668–1671. https://doi.org/10.1080/15476286.2017.1356551

    Article  PubMed  PubMed Central  Google Scholar 

  8. Metodiev MD, Lesko N, Park CB, Camara Y et al (2009) Methylation of 12S rRNA is necessary for in vivo stability of the small subunit of the mammalian mitochondrial ribosome. Cell Metab 9(4):386–397. https://doi.org/10.1016/j.cmet.2009.03.001

    Article  CAS  PubMed  Google Scholar 

  9. Metodiev MD, Spahr H, Loguercio Polosa P, Meharg C et al (2014) NSUN4 is a dual function mitochondrial protein required for both methylation of 12S rRNA and coordination of mitoribosomal assembly. PLoS Genet 10(2):e1004110. https://doi.org/10.1371/journal.pgen.1004110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Camara Y, Asin-Cayuela J, Park CB, Metodiev MB et al (2011) MTERF4 regulates translation by targeting the methyltransferase NSUN4 to the mammalian mitochondrial ribosome. Cell Metab 13(5):527–539. https://doi.org/10.1016/j.cmet.2011.04.002

    Article  CAS  PubMed  Google Scholar 

  11. Wredenberg A, Lagouge M, Bratic A, Metodiev MD et al (2013) MTERF3 regulates mitochondrial ribosome biogenesis in invertebrates and mammals. PLoS Genet 9(1):e1003178. https://doi.org/10.1371/journal.pgen.1003178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bruning JC, Michael MD, Winnay JN, Hayashi T et al (1998) A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell 2(5):559–569

    Article  CAS  Google Scholar 

  13. Sakamoto K, Gurumurthy CB, Wagner KU (2014) Generation of conditional knockout mice. Methods Mol Biol 1194:21–35. https://doi.org/10.1007/978-1-4939-1215-5_2

    Article  CAS  PubMed  Google Scholar 

  14. Cahill A, Baio DL, Cunningham CC (1995) Isolation and characterization of rat liver mitochondrial ribosomes. Anal Biochem 232(1):47–55. https://doi.org/10.1006/abio.1995.9962

    Article  CAS  PubMed  Google Scholar 

  15. O’Brien TW (1971) The general occurrence of 55 S ribosomes in mammalian liver mitochondria. J Biol Chem 246(10):3409–3417

    Article  Google Scholar 

  16. Hamilton MG, O’Brien TW (1974) Ultracentrifugal characterization of the mitochondrial ribosome and subribosomal particles of bovine liver: molecular size and composition. Biochemistry 13(26):5400–5403. https://doi.org/10.1021/bi00723a024

    Article  CAS  PubMed  Google Scholar 

  17. Ruzzenente B, Metodiev MD, Wredenberg A, Bratic A et al (2012) LRPPRC is necessary for polyadenylation and coordination of translation of mitochondrial mRNAs. EMBO J 31(2):443–456. https://doi.org/10.1038/emboj.2011.392

    Article  CAS  PubMed  Google Scholar 

  18. Luthe DS (1983) A simple technique for the preparation and storage of sucrose gradients. Anal Biochem 135(1):230–232

    Article  CAS  Google Scholar 

  19. Cooper AJ, Smallwood JA, Morgan RA (1984) The preparation of freeze-thaw density gradients with homogeneous solute concentrations. J Immunol Methods 71(2):259–264

    Article  CAS  Google Scholar 

  20. Lake NJ, Webb BD, Stroud DA, Richman TR et al (2017) Biallelic mutations in MRPS34 lead to instability of the small mitoribosomal subunit and leigh syndrome. Am J Hum Genet 101(2):239–254. https://doi.org/10.1016/j.ajhg.2017.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lambowitz AM (1979) Preparation and analysis of mitochondrial ribosomes. Methods Enzymol 59:421–433

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Metodi D. Metodiev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ruzzenente, B., Metodiev, M.D. (2021). Linear Density Sucrose Gradients to Study Mitoribosomal Biogenesis in Tissue-Specific Knockout Mice. In: Singh, S.R., Hoffman, R.M., Singh, A. (eds) Mouse Genetics . Methods in Molecular Biology, vol 2224. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1008-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1008-4_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1007-7

  • Online ISBN: 978-1-0716-1008-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics