Skip to main content

Hematological Humanization of Immune-Deficient Mice

  • Protocol
  • First Online:
Mouse Genetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2224))

Abstract

Mice with human hematopoietic system have become critical for research and preclinical studies. Mice with patient-derived xenografts of different tumors exist without human immune system. Answers can be addressed with the same immunodeficient mice that are chimeric for the human hemato-lymphoid system (humanized mice). The growing field of immune-oncology could benefit from preclinical studies with the humanized mice. Other fields will also benefit such as studies of infectious disease, regenerative medicine, organ transplant, and allergies. Here, we describe the method to humanize immune-deficient mice with human CD34+ hematopoietic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yong KSM, Her Z, Chen Q (2018) Humanized mice as unique tools for human-specific studies. Arch Immunol Ther Exp 66(4):245–266

    Article  Google Scholar 

  2. Bosma GC, Custer RP, Bosma MJ (1983) A severe combined immunodeficiency mutation in the mouse. Nature 301(5900):527–530

    Article  CAS  Google Scholar 

  3. Woodbine L, Neal JA, Sasi NK, Shimada M, Deem K, Coleman H, Dobyns WB, Ogi T, Meek K, Davies EG, Jeggo PA (2013) PRKDC mutations in a SCID patient with profound neurological abnormalities. J Clin Invest 123(7):2969–2980

    Article  CAS  Google Scholar 

  4. Ailles LE, Gerhard B, Kawagoe H, Hogge DE (1999) Growth characteristics of acute myelogenous leukemia progenitors that initiate malignant hematopoiesis in nonobese diabetic/severe combined immunodeficient mice. Blood 94(5):1761–1772

    Article  CAS  Google Scholar 

  5. Van der Loo JC, Hanenberg H, Cooper RJ, Luo FY, Lazaridis EN, Williams DA (1998) Nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mouse as a model system to study the engraftment and mobilization of human peripheral blood stem cells. Blood 92(7):2556–2570

    Article  Google Scholar 

  6. Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K, Ueyama Y, Koyanagi Y, Sugamura K, Tsuji K, Heike T, Nakahata T (2002) NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100(9):3175–3182

    Article  CAS  Google Scholar 

  7. Katano I, Ito R, Kamisako T, Eto T, Ogura T, Kawai K, Suemizu H, Takahashi T, Kawakami Y, Ito M (2014) NOD-Rag2null IL-2Rgammanull mice: an alternative to NOG mice for generation of humanized mice. Exp Anim 63(3):321–330

    Article  CAS  Google Scholar 

  8. Shultz LD, Lang PA, Christianson SW, Gott B, Lyons B, Umeda S, Leiter E, Hesselton R, Wagar EJ, Leif JH, Kollet O, Lapidot T, Greiner DL (2000) NOD/LtSz-Rag1null mice: an immunodeficient and radioresistant model for engraftment of human hematolymphoid cells, HIV infection, and adoptive transfer of NOD mouse diabetogenic T cells. J Immunol 164(5):2496–2507

    Article  CAS  Google Scholar 

  9. Andre MC, Erbacher A, Gille C, Schmauke V, Goecke B, Hohberger A, Mang P, Wilhelm A, Mueller I, Herr W, Lang P, Handgretinger R, Hartwig UF (2010) Long-term human CD34+ stem cell-engrafted nonobese diabetic/SCID/IL-2R gamma(null) mice show impaired CD8+ T cell maintenance and a functional arrest of immature NK cells. J Immunol 185(5):2710–2720

    Article  CAS  Google Scholar 

  10. Wiekmeijer AS, Pike-Overzet K, Brugman MH, Salvatori DC, Egeler RM, Bredius RG, Fibbe WE, Staal FJ (2014) Sustained engraftment of cryopreserved human bone marrow CD34(+) cells in young adult NSG mice. Bioresources 3(3):110–116

    CAS  Google Scholar 

  11. Lim AI, Li Y, Lopez-Lastra S, Stadhouders R, Paul F, Casrouge A, Serafini N, Puel A, Bustamante J, Surace L, Masse-Ranson G, David E, Strick-Marchand H, Le Bourhis L, Cocchi R, Topazio D, Graziano P, Muscarella LA, Rogge L, Norel X, Sallenave JM, Allez M, Graf T, Hendriks RW, Casanova JL, Amit I, Yssel H, Di Santo JP (2017) Systemic human ILC precursors provide a substrate for tissue ILC differentiation. Cell 168(6):1086–1100. e10

    Article  CAS  Google Scholar 

  12. Billerbeck E, Barry WT, Mu K, Dorner M, Rice CM, Ploss A (2011) Development of human CD4+FoxP3+ regulatory T cells in human stem cell factor-, granulocyte-macrophage colony-stimulating factor-, and interleukin-3-expressing NOD-SCID IL2Rgamma(null) humanized mice. Blood 117(11):3076–3086

    Article  CAS  Google Scholar 

  13. Van Lent AU, Dontje W, Nagasawa M, Siamari R, Bakker AQ, Pouw SM, Maijoor KA, Weijer K, Cornelissen JJ, Blom B, Di Santo JP, Spits H, Legrand N (2009) IL-7 enhances thymic human T cell development in “human immune system” Rag2−/-IL-2Rgammac−/− mice without affecting peripheral T cell homeostasis. J Immunol 183(12):7645–7655

    Article  Google Scholar 

  14. Chen Q, Khoury M, Chen J (2009) Expression of human cytokines dramatically improves reconstitution of specific human-blood lineage cells in humanized mice. Proc Natl Acad Sci 106(51):21783–21788

    Article  CAS  Google Scholar 

  15. Huntington ND, Legrand N, Alves NL, Jaron B, Weijer K, Plet A, Corcuff E, Mortier E, Jacques Y, Spits H, Di Santo JP (2009) IL-15 trans-presentation promotes human NK cell development and differentiation in vivo. J Exp Med 206(1):25–34

    Article  CAS  Google Scholar 

  16. Her Z, Yong KSM, Paramasivam K, Tan WWS, Chan XY, Tan SY, Liu M, Fan Y, Linn YC, Hui KM, Surana U, Chen Q (2017) An improved pre-clinical patient-derived liquid xenograft mouse model for acute myeloid leukemia. J Hematol Oncol 10(1):162

    Article  Google Scholar 

  17. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367(6464):645–648

    Article  CAS  Google Scholar 

  18. Lin S, Huang G, Cheng L, Li Z, Xiao Y, Deng Q, Jiang Y, Li B, Lin S, Wang S, Wu Q, Yao H, Cao S, Li Y, Liu P, Wei W, Pei D, Yao Y, Wen Z, Zhang X, Wu Y, Zhang Z, Cui S, Sun X, Qian X, Li P (2018) Establishment of peripheral blood mononuclear cell-derived humanized lung cancer mouse models for studying efficacy of PD-L1/PD-1 targeted immunotherapy. MAbs 10(8):1301–1311

    Article  CAS  Google Scholar 

  19. Wang M, Yao LC, Cheng M, Cai D, Martinek J, Pan CX, Shi W, Ma AH, De Vere White RW, Airhart S, Liu ET, Banchereau J, Brehm MA, Greiner DL, Shultz LD, Palucka K, Keck JG (2018) Humanized mice in studying efficacy and mechanisms of PD-1-targeted cancer immunotherapy. FASEB J 32(3):1537–1549

    Article  CAS  Google Scholar 

  20. Ito A, Ishida T, Yano H, Inagaki A, Suzuki S, Sato F, Takino H, Mori F, Ri M, Kusumoto S, Komatsu H, Iida S, Inagaki H, Ueda R (2009) Defucosylated anti-CCR4 monoclonal antibody exercises potent ADCC-mediated antitumor effect in the novel tumor-bearing humanized NOD/Shi-scid, IL-2Rgamma(null) mouse model. Cancer Immunol Immunother 58(8):1195–1206

    Article  CAS  Google Scholar 

  21. Miyakawa Y, Ohnishi Y, Tomisawa M, Monnai M, Kohmura K, Ueyama Y, Ito M, Ikeda Y, Kizaki M, Nakamura M (2004) Establishment of a new model of human multiple myeloma using NOD/SCID/gammac(null) (NOG) mice. Biochem Biophys Res Commun 313(2):258–262

    Article  CAS  Google Scholar 

  22. Bryce PJ, Falahati R, Kenney LL, Leung J, Bebbington C, Tomasevic N, Krier RA, Hsu CL, Shultz LD, Greiner DL, Brehm MA (2016) Humanized mouse model of mast cell-mediated passive cutaneous anaphylaxis and passive systemic anaphylaxis. J Allergy Clin Immunol 138(3):769–779

    Article  CAS  Google Scholar 

  23. Ito R, Maruoka S, Gon Y, Katano I, Takahashi T, Ito M, Izuhara K, Nunomura S (2019) Recent advances in allergy research using humanized mice. Int J Mol Sci 20(11):2740

    Article  CAS  Google Scholar 

  24. Viehmann Milam AA, Maher SE, Gibson JA, Lebastchi J, Wen L, Ruddle NH, Herold KC, Bothwell AL (2014) A humanized mouse model of autoimmune insulitis. Diabetes 63(5):1712–1724

    Article  Google Scholar 

  25. Gunawan M, Her Z, Liu M, Tan SY, Chan XY, Tan WWS, Dharmaraaja S, Fan Y, Ong CB, Loh E, Chang KTE, Tan TC, Chan JKY, Chen Q (2017) A novel human systemic lupus erythematosus model in humanised mice. Sci Rep 7(1):16642

    Article  Google Scholar 

  26. Brehm MA, Jouvet N, Greiner DL, Shultz LD (2013) Humanized mice for the study of infectious diseases. Curr Opin Immunol 25(4):428–435

    Article  CAS  Google Scholar 

  27. Munz C (2017) Humanized mouse models for Epstein Barr virus infection. Curr Opin Virol 25:113–118

    Article  CAS  Google Scholar 

  28. Satheesan S, Li H, Burnett JC, Takahashi M, Li S, Wu SX, Synold TW, Rossi JJ, Zhou J (2018) HIV replication and latency in a humanized NSG mouse model during suppressive oral combinational antiretroviral therapy. J Virol 92(7):e02118–e02117

    Article  Google Scholar 

  29. Amaladoss A, Chen Q, Liu M, Dummler SK, Dao M, Suresh S, Chen J, Preiser PR (2015) De novo generated human red blood cells in humanized mice support Plasmodium falciparum infection. PLoS One 10(6):e0129825

    Article  Google Scholar 

  30. McIntosh BE, Brown ME, Duffin BM, Maufort JP, Vereide DT, Slukvin II, Thomson JA (2015) Nonirradiated NOD,B6.SCID Il2rgamma−/− Kit(W41/W41) (NBSGW) mice support multilineage engraftment of human hematopoietic cells. Stem Cell Rep 4(2):171–180

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the following grants: Bosarge Family Foundation; In part by NAS and USAID, and that any opinions, findings, conclusions, or recommendations expressed in such article are those of the authors alone, and do not necessarily reflect the views of USAID or NAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranela Rameshwar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gergues, M., Ayer, S., Morelli, S., Greco, S.J., Rameshwar, P. (2021). Hematological Humanization of Immune-Deficient Mice. In: Singh, S.R., Hoffman, R.M., Singh, A. (eds) Mouse Genetics . Methods in Molecular Biology, vol 2224. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1008-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1008-4_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1007-7

  • Online ISBN: 978-1-0716-1008-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics