Skip to main content

High-Throughput Genotyping Technologies in Plant Taxonomy

  • Protocol
  • First Online:
Molecular Plant Taxonomy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2222))

Abstract

Molecular markers provide researchers with a powerful tool for variation analysis between plant genomes. They are heritable and widely distributed across the genome and for this reason have many applications in plant taxonomy and genotyping. Over the last decade, molecular marker technology has developed rapidly and is now a crucial component for genetic linkage analysis, trait mapping, diversity analysis, and association studies. This chapter focuses on molecular marker discovery, its application, and future perspectives for plant genotyping through pangenome assemblies. Included are descriptions of automated methods for genome and sequence distance estimation, genome contaminant analysis in sequence reads, genome structural variation, and SNP discovery methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hebert PDN, Gregory TR (2005) The promise of DNA barcoding for taxonomy. Syst Biol 54(5):852–859. https://doi.org/10.1080/10635150500354886

    Article  PubMed  Google Scholar 

  2. Dick CW, Webb CO (2012) Plant DNA barcodes, taxonomic management, and species discovery in tropical forests. In: DNA barcodes. Springer, pp 379–393

    Google Scholar 

  3. Parducci L, Bennett KD, Ficetola GF, Alsos IG, Suyama Y, Wood JR, Pedersen MW (2017) Ancient plant DNA in lake sediments. New Phytol 214(3):924–942

    Article  CAS  PubMed  Google Scholar 

  4. Sønstebø JH, Gielly L, Brysting AK, Elven R, Edwards M, Haile J, Willerslev E, Coissac E, Rioux D, Sannier J (2010) Using next-generation sequencing for molecular reconstruction of past Arctic vegetation and climate. Mol Ecol Resour 10(6):1009–1018

    Article  PubMed  CAS  Google Scholar 

  5. Pornon A, Escaravage N, Burrus M, Holota H, Khimoun A, Mariette J, Pellizzari C, Iribar A, Etienne R, Taberlet P (2016) Using metabarcoding to reveal and quantify plant-pollinator interactions. Sci Rep 6:27282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yesson C, Jackson A, Russell S, Williamson CJ, Brodie J (2018) SNPs reveal geographical population structure of Corallina officinalis (Corallinaceae, Rhodophyta). Eur J Phycol 53(2):180–188. https://doi.org/10.1080/09670262.2017.1402373

    Article  CAS  Google Scholar 

  7. Batley J, Edwards D (2007) SNP applications in plants. In: Association mapping in plants. Springer, pp 95–102

    Google Scholar 

  8. Tang H, Bowers JE, Wang X, Ming R, Alam M, Paterson AH (2008) Synteny and collinearity in plant genomes. Science 320(5875):486–488

    Article  CAS  PubMed  Google Scholar 

  9. Andrello M, Henry K, Devaux P, Verdelet D, Desprez B, Manel S (2017) Insights into the genetic relationships among plants of Beta section Beta using SNP markers. Theor Appl Genet 130(9):1857–1866

    Article  PubMed  Google Scholar 

  10. Brito PH, Edwards SV (2009) Multilocus phylogeography and phylogenetics using sequence-based markers. Genetica 135(3):439–455. https://doi.org/10.1007/s10709-008-9293-3

    Article  PubMed  Google Scholar 

  11. Koch MA, Kiefer C (2006) Molecules and migration: biogeographical studies in cruciferous plants. Plant Syst Evol 259(2):121–142. https://doi.org/10.1007/s00606-006-0416-y

    Article  CAS  Google Scholar 

  12. Atwell S, Huang YS, Vilhjálmsson BJ, Willems G, Horton M, Li Y, Meng D, Platt A, Tarone AM, Hu TT (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465(7298):627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Edwards D, Forster JW, Chagné D, Batley J (2007) What are SNPs? In: Association mapping in plants. Springer, pp 41–52

    Google Scholar 

  14. Duran C, Appleby N, Clark T, Wood D, Imelfort M, Batley J, Edwards D (2009) AutoSNPdb: an annotated single nucleotide polymorphism database for crop plants. Nucleic Acids Res 37(suppl_1):D951–D953

    Article  CAS  PubMed  Google Scholar 

  15. Bhattramakki D, Dolan M, Hanafey M, Wineland R, Vaske D, Register JC, Tingey SV, Rafalski A (2002) Insertion-deletion polymorphisms in 3′ regions of maize genes occur frequently and can be used as highly informative genetic markers. Plant Mol Biol 48(5):539–547. https://doi.org/10.1023/a:1014841612043

    Article  CAS  PubMed  Google Scholar 

  16. Bundock PC, Eliott FG, Ablett G, Benson AD, Casu RE, Aitken KS, Henry RJ (2009) Targeted single nucleotide polymorphism (SNP) discovery in a highly polyploid plant species using 454 sequencing. Plant Biotechnol J 7(4):347–354. https://doi.org/10.1111/j.1467-7652.2009.00401.x

    Article  CAS  PubMed  Google Scholar 

  17. Hayashi K, Hashimoto N, Daigen M, Ashikawa I (2004) Development of PCR-based SNP markers for rice blast resistance genes at the Piz locus. Theor Appl Genet 108(7):1212–1220

    Article  CAS  PubMed  Google Scholar 

  18. Scheben A, Batley J, Edwards D (2017) Genotyping-by-sequencing approaches to characterize crop genomes: choosing the right tool for the right application. Plant Biotechnol J 15(2):149–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Reyes-Velasco J, Manthey JD, Bourgeois Y, Freilich X, Boissinot S (2018) Revisiting the phylogeography, demography and taxonomy of the frog genus Ptychadena in the Ethiopian highlands with the use of genome-wide SNP data. PLoS One 13(2):e0190440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Scheben A, Verpaalen B, Lawley CT, Chan CKK, Bayer PE, Batley J, Edwards D (2018) CropSNPdb: a database of SNP array data for Brassica crops and hexaploid bread wheat. Plant J 98(1):142–152

    Article  CAS  Google Scholar 

  21. Zhao W, Canaran P, Jurkuta R, Fulton T, Glaubitz J, Buckler E, Doebley J, Gaut B, Goodman M, Holland J (2006) Panzea: a database and resource for molecular and functional diversity in the maize genome. Nucleic Acids Res 34(suppl_1):D752–D757

    Article  CAS  PubMed  Google Scholar 

  22. Wilkinson PA, Winfield MO, Barker GLA, Tyrrell S, Bian X, Allen AM, Burridge A, Coghill JA, Waterfall C, Caccamo M (2016) CerealsDB 3.0: expansion of resources and data integration. BMC Bioinformatics 17(1):256

    Article  PubMed  PubMed Central  Google Scholar 

  23. Suyama Y, Matsuki Y (2015) MIG-seq: an effective PCR-based method for genome-wide single-nucleotide polymorphism genotyping using the next-generation sequencing platform. Sci Rep 5:16963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang W, Mauleon R, Hu Z, Chebotarov D, Tai S, Wu Z, Li M, Zheng T, Fuentes RR, Zhang F, Mansueto L, Copetti D, Sanciangco M, Palis KC, Xu J, Sun C, Fu B, Zhang H, Gao Y, Zhao X, Shen F, Cui X, Yu H, Li Z, Chen M, Detras J, Zhou Y, Zhang X, Zhao Y, Kudrna D, Wang C, Li R, Jia B, Lu J, He X, Dong Z, Xu J, Li Y, Wang M, Shi J, Li J, Zhang D, Lee S, Hu W, Poliakov A, Dubchak I, Ulat VJ, Borja FN, Mendoza JR, Ali J, Li J, Gao Q, Niu Y, Yue Z, Naredo MEB, Talag J, Wang X, Li J, Fang X, Yin Y, Glaszmann J-C, Zhang J, Li J, Hamilton RS, Wing RA, Ruan J, Zhang G, Wei C, Alexandrov N, McNally KL, Li Z, Leung H (2018) Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557(7703):43–49. https://doi.org/10.1038/s41586-018-0063-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Balfourier F, Bouchet S, Robert S, De Oliveira R, Rimbert H, Kitt J, Choulet F, Paux E (2019) Worldwide phylogeography and history of wheat genetic diversity. Sci Adv 5(5):eaav0536. https://doi.org/10.1126/sciadv.aav0536

    Article  PubMed  PubMed Central  Google Scholar 

  26. Golicz AA, Bayer PE, Barker GC, Edger PP, Kim H, Martinez PA, Chan CKK, Severn-Ellis A, McCombie WR, Parkin IAP, Paterson AH, Pires JC, Sharpe AG, Tang H, Teakle GR, Town CD, Batley J, Edwards D (2016) The pangenome of an agronomically important crop plant Brassica oleracea. Nat Commun 7:13390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Montenegro JD, Golicz AA, Bayer PE, Hurgobin B, Lee H, Chan C-KK, Visendi P, Lai K, Doležel J, Batley J, Edwards D (2017) The pangenome of hexaploid bread wheat. Plant J 90(5):1007–1013. https://doi.org/10.1111/tpj.13515

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Y, Xia R, Kuang H, Meyers BC (2016) The diversification of plant NBS-LRR defense genes directs the evolution of MicroRNAs that target them. Mol Biol Evol 33(10):2692–2705. https://doi.org/10.1093/molbev/msw154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li Y-H, Zhou G, Ma J, Jiang W, Jin L-G, Zhang Z, Guo Y, Zhang J, Sui Y, Zheng L, Zhang S-S, Zuo Q, Shi X-H, Li Y-F, Zhang W-K, Hu Y, Kong G, Hong H-L, Tan B, Song J, Liu Z-X, Wang Y, Ruan H, CKL Y, Liu J, Wang H, Zhang L-J, Guan R-X, Wang K-J, Li W-B, Chen S-Y, Chang R-Z, Jiang Z, Jackson SA, Li R, Qiu L-J (2014) De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat Biotechnol 32(10):1045–1052. https://doi.org/10.1038/nbt.2979

    Article  CAS  PubMed  Google Scholar 

  30. Morgante M, De Paoli E, Radovic S (2007) Transposable elements and the plant pan-genomes. Curr Opin Plant Biol 10(2):149–155

    Article  CAS  PubMed  Google Scholar 

  31. Lam H-M, Xu X, Liu X, Chen W, Yang G, Wong F-L, Li M-W, He W, Qin N, Wang B (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42(12):1053

    Article  CAS  PubMed  Google Scholar 

  32. McHale LK, Haun WJ, Xu WW, Bhaskar PB, Anderson JE, Hyten DL, Gerhardt DJ, Jeddeloh JA, Stupar RM (2012) Structural variants in the soybean genome localize to clusters of biotic stress-response genes. Plant Physiol 159(4):1295–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Winzer T, Gazda V, He Z, Kaminski F, Kern M, Larson TR, Li Y, Meade F, Teodor R, Vaistij FE (2012) A Papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine. Science 336(6089):1704–1708

    Article  CAS  PubMed  Google Scholar 

  34. Wu Z, Sloan DB (2019) Recombination and intraspecific polymorphism for the presence and absence of entire chromosomes in mitochondrial genomes. Heredity 122(5):647

    Article  CAS  PubMed  Google Scholar 

  35. Wang P, Moore BM, Panchy NL, Meng F, Lehti-Shiu MD, Shiu S-H (2018) Factors influencing gene family size variation among related species in a plant family, Solanaceae. Genome Biol Evol 10(10):2596–2613. https://doi.org/10.1093/gbe/evy193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gao L, Gonda I, Sun H, Ma Q, Bao K, Tieman DM, Burzynski-Chang EA, Fish TL, Stromberg KA, Sacks GL, Thannhauser TW, Foolad MR, Diez MJ, Blanca J, Canizares J, Xu Y, van der Knaap E, Huang S, Klee HJ, Giovannoni JJ, Fei Z (2019) The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nat Genet 51(6):1044–1051. https://doi.org/10.1038/s41588-019-0410-2

    Article  CAS  PubMed  Google Scholar 

  37. Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17(1):431–449. https://doi.org/10.1111/j.1365-294X.2007.03538.x

    Article  CAS  PubMed  Google Scholar 

  38. Oueslati A, Ollitrault F, Baraket G, Salhi-Hannachi A, Navarro L, Ollitrault P (2016) Towards a molecular taxonomic key of the Aurantioideae subfamily using chloroplastic SNP diagnostic markers of the main clades genotyped by competitive allele-specific PCR. BMC Genet 17(1):118. https://doi.org/10.1186/s12863-016-0426-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wutke S, Ludwig A (2019) Targeted PCR amplification and multiplex sequencing of ancient DNA for SNP analysis. In: Ancient DNA: methods and protocols. Springer New York, New York, NY, pp 141–147. https://doi.org/10.1007/978-1-4939-9176-1_15

    Chapter  Google Scholar 

  40. Vallebueno-Estrada M, Rodríguez-Arévalo I, Rougon-Cardoso A, Martínez González J, García Cook A, Montiel R, Vielle-Calzada J-P (2016) The earliest maize from San Marcos Tehuacán is a partial domesticate with genomic evidence of inbreeding. Proc Natl Acad Sci 113(49):14151. https://doi.org/10.1073/pnas.1609701113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Scheben A, Yuan Y, Edwards D (2016) Advances in genomics for adapting crops to climate change. Current Plant Biology 6:2–10

    Article  Google Scholar 

  42. Singh BD, Singh AK (2015) Marker-assisted plant breeding: principles and practices. Springer, New Delhi

    Book  Google Scholar 

  43. Hurgobin B, Edwards D (2017) SNP discovery using a Pangenome: has the single reference approach become obsolete? Biology 6(1):21. https://doi.org/10.3390/biology6010021

    Article  PubMed Central  Google Scholar 

  44. Veeckman E, Ruttink T, Vandepoele K (2016) Are we there yet? Reliably estimating the completeness of plant genome sequences. Plant Cell 28(8):1759–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xiao J, Zhang Z, Wu J, Yu J (2015) A brief review of software tools for pangenomics. Genomics Proteomics Bioinformatics 13(1):73–76

    Article  PubMed  PubMed Central  Google Scholar 

  46. Marroni F, Pinosio S, Morgante M (2014) Structural variation and genome complexity: is dispensable really dispensable? Curr Opin Plant Biol 18:31–36

    Article  CAS  PubMed  Google Scholar 

  47. Yao W, Li G, Zhao H, Wang G, Lian X, Xie W (2015) Exploring the rice dispensable genome using a metagenome-like assembly strategy. Genome Biol 16(1):187. https://doi.org/10.1186/s13059-015-0757-3

    Article  PubMed  PubMed Central  Google Scholar 

  48. Vernikos G, Medini D, Riley DR, Tettelin H (2015) Ten years of pan-genome analyses. Curr Opin Microbiol 23:148–154

    Article  CAS  PubMed  Google Scholar 

  49. Lu F, Romay MC, Glaubitz JC, Bradbury PJ, Elshire RJ, Wang T, Li Y, Li Y, Semagn K, Zhang X, Hernandez AG, Mikel MA, Soifer I, Barad O, Buckler ES (2015) High-resolution genetic mapping of maize pan-genome sequence anchors. Nat Commun 6:6914

    Article  CAS  PubMed  Google Scholar 

  50. Bosi E, Fondi M, Orlandini V, Perrin E, Maida I, de Pascale D, Tutino ML, Parrilli E, Giudice AL, Filloux A (2017) The pangenome of (Antarctic) Pseudoalteromonas bacteria: evolutionary and functional insights. BMC Genomics 18(1):93

    Article  PubMed  PubMed Central  Google Scholar 

  51. Fox EJ, Reid-Bayliss KS, Emond MJ, Loeb LA (2014) Accuracy of next generation sequencing platforms. Next Gener Seq Appl 1:1000106

    PubMed  PubMed Central  Google Scholar 

  52. Pfeiffer F, Gröber C, Blank M, Händler K, Beyer M, Schultze JL, Mayer G (2018) Systematic evaluation of error rates and causes in short samples in next-generation sequencing. Sci Rep 8(1):10950. https://doi.org/10.1038/s41598-018-29325-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nielsen R, Paul JS, Albrechtsen A, Song YS (2011) Genotype and SNP calling from next-generation sequencing data. Nat Rev Genet 12(6):443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yu X, Sun S (2013) Comparing a few SNP calling algorithms using low-coverage sequencing data. BMC Bioinformatics 14(1):274. https://doi.org/10.1186/1471-2105-14-274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27(21):2987–2993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. O’Rawe JA, Ferson S, Lyon GJ (2015) Accounting for uncertainty in DNA sequencing data. Trends Genet 31(2):61–66

    Article  PubMed  CAS  Google Scholar 

  57. Mielczarek M, Szyda J (2016) Review of alignment and SNP calling algorithms for next-generation sequencing data. J Appl Genet 57(1):71–79. https://doi.org/10.1007/s13353-015-0292-7

    Article  CAS  PubMed  Google Scholar 

  58. Lee T-H, Guo H, Wang X, Kim C, Paterson AH (2014) SNPhylo: a pipeline to construct a phylogenetic tree from huge SNP data. BMC Genomics 15(1):162

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zielezinski A, Vinga S, Almeida J, Karlowski WM (2017) Alignment-free sequence comparison: benefits, applications, and tools. Genome Biol 18(1):186. https://doi.org/10.1186/s13059-017-1319-7

    Article  PubMed  PubMed Central  Google Scholar 

  60. Chattopadhyay AK, Nasiev D, Flower DR (2015) A statistical physics perspective on alignment-independent protein sequence comparison. Bioinformatics 31(15):2469–2474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gardner PP, Wilm A, Washietl S (2005) A benchmark of multiple sequence alignment programs upon structural RNAs. Nucleic Acids Res 33(8):2433–2439. https://doi.org/10.1093/nar/gki541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bonham-Carter O, Steele J, Bastola D (2013) Alignment-free genetic sequence comparisons: a review of recent approaches by word analysis. Brief Bioinform 15(6):890–905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Bromberg R, Grishin NV, Otwinowski Z (2016) Phylogeny reconstruction with alignment-free method that corrects for horizontal gene transfer. PLoS Comput Biol 12(6):e1004985

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Didier G, Debomy L, Pupin M, Zhang M, Grossmann A, Devauchelle C, Laprevotte I (2007) Comparing sequences without using alignments: application to HIV/SIV subtyping. BMC Bioinformatics 8(1):1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Ondov BD, Starrett GJ, Sappington A, Kostic A, Koren S, Buck CB, Phillippy AM (2019) Mash screen: high-throughput sequence containment estimation for genome discovery. bioRxiv:557314. https://doi.org/10.1101/557314

  66. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, Phillippy AM (2016) Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 17(1):132. https://doi.org/10.1186/s13059-016-0997-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Saw AK, Raj G, Das M, Talukdar NC, Tripathy BC, Nandi S (2019) Alignment-free method for DNA sequence clustering using fuzzy integral similarity. Sci Rep 9(1):3753. https://doi.org/10.1038/s41598-019-40452-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li Y, He L, Lucy He R, Yau SST (2017) A novel fast vector method for genetic sequence comparison. Sci Rep 7(1):12226. https://doi.org/10.1038/s41598-017-12493-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17(1):10–12

    Article  Google Scholar 

  70. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data

    Google Scholar 

  71. Krueger F (2015) Trim galore. A wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files 516:517

    Google Scholar 

  72. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12(4):357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Subgroup GPDP (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Broder AZ (1997) On the resemblance and containment of documents. In: Proceedings. compression and complexity of SEQUENCES 1997 (Cat. No. 97TB100171). IEEE, pp 21–29

    Google Scholar 

  75. Fan H, Ives AR, Surget-Groba Y, Cannon CH (2015) An assembly and alignment-free method of phylogeny reconstruction from next-generation sequencing data. BMC Genomics 16(1):522

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Brockman W, Alvarez P, Young S, Garber M, Giannoukos G, Lee WL, Russ C, Lander ES, Nusbaum C, Jaffe DB (2008) Quality scores and SNP detection in sequencing-by-synthesis systems. Genome Res 18(5):763–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18(5):821–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1(1):18

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zimin AV, Marçais G, Puiu D, Roberts M, Salzberg SL, Yorke JA (2013) The MaSuRCA genome assembler. Bioinformatics 29(21):2669–2677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Edwards .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Danilevicz, M.F., Tay Fernandez, C.G., Marsh, J.I., Bayer, P.E., Edwards, D. (2021). High-Throughput Genotyping Technologies in Plant Taxonomy. In: Besse, P. (eds) Molecular Plant Taxonomy. Methods in Molecular Biology, vol 2222. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0997-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0997-2_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0996-5

  • Online ISBN: 978-1-0716-0997-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics