Skip to main content

Retrotransposable Elements: DNA Fingerprinting and the Assessment of Genetic Diversity

  • Protocol
  • First Online:
Molecular Plant Taxonomy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2222))

Abstract

Retrotransposable elements (RTEs) are highly common mobile genetic elements that are composed of several classes and make up the majority of eukaryotic genomes. The “copy-out and paste-in” life cycle of replicative transposition in these dispersive and ubiquitous RTEs leads to new genome insertions without excision of the original element. RTEs are important drivers of species diversity; they exhibit great variety in structure, size, and mechanisms of transposition, making them important putative components in genome evolution. Accordingly, various applications have been developed to explore the polymorphisms in RTE insertion patterns. These applications include conventional or anchored polymerase chain reaction (PCR) and quantitative or digital PCR with primers designed for the 5′ or 3′ junction. Marker systems exploiting these PCR methods can be easily developed and are inexpensively used in the absence of extensive genome sequence data. The main inter-repeat amplification polymorphism techniques include inter-retrotransposon amplified polymorphism (IRAP), retrotransposon microsatellite amplified polymorphism (REMAP), and Inter-Primer Binding Site (iPBS) for PCR amplification with a single or two primers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kojima KK (2018) Structural and sequence diversity of eukaryotic transposable elements. Genes Genet Syst 94(6):233–252. https://doi.org/10.1266/ggs.18-00024

    Article  CAS  PubMed  Google Scholar 

  2. Naville M, Henriet S, Warren I, Sumic S, Reeve M, Volff JN, Chourrout D (2019) Massive changes of genome size driven by expansions of non-autonomous transposable elements. Curr Biol 29(7):1161–1168.e6. https://doi.org/10.1016/j.cub.2019.01.080

    Article  CAS  PubMed  Google Scholar 

  3. Neumann P, Navratilova A, Koblizkova A, Kejnovsky E, Hribova E, Hobza R, Widmer A, Dolezel J, Macas J (2011) Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mob DNA 2(1):4. https://doi.org/10.1186/1759-8753-2-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Belyayev A, Josefiová J, Jandová M, Kalendar R, Krak K, Mandák B (2019) Natural history of a satellite DNA family: from the ancestral genome component to species-specific sequences, concerted and non-concerted evolution. Int J Mol Sci 20(5). https://doi.org/10.3390/ijms20051201

  5. Arkhipova IR, Yushenova IA (2019) Giant transposons in eukaryotes: is bigger better? Genome Biol Evol 11(3):906–918. https://doi.org/10.1093/gbe/evz041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Galindo-Gonzalez L, Mhiri C, Deyholos MK, Grandbastien MA (2017) LTR-retrotransposons in plants: engines of evolution. Gene 626:14–25. https://doi.org/10.1016/j.gene.2017.04.051

    Article  CAS  PubMed  Google Scholar 

  7. Serrato-Capuchina A, Matute DR (2018) The role of transposable elements in speciation. Genes (Basel) 9(5). https://doi.org/10.3390/genes9050254

  8. Sharma A, Wolfgruber TK, Presting GG (2013) Tandem repeats derived from centromeric retrotransposons. BMC Genomics 14:142. https://doi.org/10.1186/1471-2164-14-142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Macas J, Novak P, Pellicer J, Cizkova J, Koblizkova A, Neumann P, Fukova I, Dolezel J, Kelly LJ, Leitch IJ (2015) In depth characterization of repetitive DNA in 23 plant genomes reveals sources of genome size variation in the legume tribe Fabeae. PLoS One 10(11):e0143424. https://doi.org/10.1371/journal.pone.0143424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pollak Y, Zelinger E, Raskina O (2018) Repetitive DNA in the architecture, Repatterning, and diversification of the genome of Aegilops speltoides Tausch (Poaceae, Triticeae). Front Plant Sci 9:1779. https://doi.org/10.3389/fpls.2018.01779

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bilinski P, Han Y, Hufford MB, Lorant A, Zhang P, Estep MC, Jiang J, Ross-Ibarra J (2017) Genomic abundance is not predictive of tandem repeat localization in grass genomes. PLoS One 12(6):e0177896. https://doi.org/10.1371/journal.pone.0177896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Belyayev A, Kalendar R, Brodsky L, Nevo E, Schulman AH, Raskina O (2010) Transposable elements in a marginal plant population: temporal fluctuations provide new insights into genome evolution of wild diploid wheat. Mob DNA 1:6. https://doi.org/10.1186/1759-8753-1-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Baumel A, Ainouche M, Kalendar R, Schulman AH (2002) Retrotransposons and genomic stability in populations of the young allopolyploid species Spartina anglica CE Hubbard (Poaceae). Mol Biol Evol 19(8):1218–1227. https://doi.org/10.1093/oxfordjournals.molbev.a004182

    Article  CAS  PubMed  Google Scholar 

  14. Kalendar R, Tanskanen J, Chang W, Antonius K, Sela H, Peleg O, Schulman AH (2008) Cassandra retrotransposons carry independently transcribed 5S RNA. Proc Natl Acad Sci U S A 105(15):5833–5838. https://doi.org/10.1073/pnas.0709698105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kalendar R, Vicient CM, Peleg O, Anamthawat-Jonsson K, Bolshoy A, Schulman AH (2004) Large retrotransposon derivatives: abundant, conserved but nonautonomous retroelements of barley and related genomes. Genetics 166(3):1437–1450. https://doi.org/10.1534/genetics.166.3.1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Smykal P, Kalendar R, Ford R, Macas J, Griga M (2009) Evolutionary conserved lineage of Angela-family retrotransposons as a genome-wide microsatellite repeat dispersal agent. Heredity 103(2):157–167. https://doi.org/10.1038/hdy.2009.45

    Article  CAS  PubMed  Google Scholar 

  17. Moisy C, Schulman AH, Kalendar R, Buchmann JP, Pelsy F (2014) The Tvv1 retrotransposon family is conserved between plant genomes separated by over 100 million years. Theor Appl Genet 127(5):1223–1235. https://doi.org/10.1007/s00122-014-2293-z

    Article  CAS  PubMed  Google Scholar 

  18. Hosid E, Brodsky L, Kalendar R, Raskina O, Belyayev A (2012) Diversity of long terminal repeat retrotransposon genome distribution in natural populations of the wild diploid wheat Aegilops speltoides. Genetics 190(1):263–U412. https://doi.org/10.1534/genetics.111.134643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Masuta Y, Kawabe A, Nozawa K, Naito K, Kato A, Ito H (2018) Characterization of a heat-activated retrotransposon in Vigna angularis. Breed Sci 68(2):168–176. https://doi.org/10.1270/jsbbs.17085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ivancevic AM, Kortschak RD, Bertozzi T, Adelson DL (2016) LINEs between species: evolutionary dynamics of LINE-1 retrotransposons across the eukaryotic tree of life. Genome Biol Evol 8(11):3301–3322. https://doi.org/10.1093/gbe/evw243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kalendar R, Schulman AH (2014) Transposon-based tagging: IRAP, REMAP, and iPBS. Methods Mol Biol 1115:233–255. https://doi.org/10.1007/978-1-62703-767-9_12

    Article  CAS  PubMed  Google Scholar 

  22. Kalendar R (2011) The use of retrotransposon-based molecular markers to analyze genetic diversity. Field Veg Crops Res 48(2):261–274. https://doi.org/10.5937/ratpov1102261K

    Article  Google Scholar 

  23. Piegu B, Bire S, Arensburger P, Bigot Y (2015) A survey of transposable element classification systems--a call for a fundamental update to meet the challenge of their diversity and complexity. Mol Phylogenet Evol 86:90–109. https://doi.org/10.1016/j.ympev.2015.03.009

    Article  CAS  PubMed  Google Scholar 

  24. Finnegan DJ (1990) Transposable elements and DNA transposition in eukaryotes. Curr Opin Cell Biol 2(3):471–477. https://doi.org/10.1016/0955-0674(90)90130-7

    Article  CAS  PubMed  Google Scholar 

  25. Kalendar R, Raskina O, Belyayev A, Schulman A (2020) Long tandem arrays of LTR retroelements in plants. Int J Mol Sci 21:2931. https://doi.org/10.3390/ijms21082931

    Article  CAS  PubMed Central  Google Scholar 

  26. Feschotte C, Jiang N, Wessler S (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3(5):329–341. https://doi.org/10.1038/nrg793

    Article  CAS  PubMed  Google Scholar 

  27. Kapitonov VV, Jurka J (2008) A universal classification of eukaryotic transposable elements implemented in Repbase. Nat Rev Genet 9(5):411–412.; ; author reply 414. https://doi.org/10.1038/nrg2165-c1

    Article  PubMed  Google Scholar 

  28. Wu L, Gingery M, Abebe M, Arambula D, Czornyj E, Handa S, Khan H, Liu M, Pohlschroder M, Shaw KL, Du A, Guo H, Ghosh P, Miller JF, Zimmerly S (2018) Diversity-generating retroelements: natural variation, classification and evolution inferred from a large-scale genomic survey. Nucleic Acids Res 46(1):11–24. https://doi.org/10.1093/nar/gkx1150

    Article  CAS  PubMed  Google Scholar 

  29. Kapitonov V, Jurka J (1996) The age of Alu subfamilies. J Mol Evol 42. https://doi.org/10.1007/bf00163212

  30. Kapitonov VV, Tempel S, Jurka J (2009) Simple and fast classification of non-LTR retrotransposons based on phylogeny of their RT domain protein sequences. Gene 448(2):207–213. https://doi.org/10.1016/j.gene.2009.07.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kojima KK, Jurka J (2013) A superfamily of DNA transposons targeting multicopy small RNA genes. PLoS One 8. https://doi.org/10.1371/journal.pone.0068260

  32. Bannert N, Kurth R (2004) Retroelements and the human genome: new perspectives on an old relation. Proc Natl Acad Sci U S A 101(Suppl 2):14572–14579. https://doi.org/10.1073/pnas.0404838101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kalendar R, Amenov A, Daniyarov A (2019) Use of retrotransposon-derived genetic markers to analyse genomic variability in plants. Funct Plant Biol 46(1):15–29. https://doi.org/10.1071/fp18098

    Article  CAS  Google Scholar 

  34. Kalendar RN, Aizharkyn KS, Khapilina ON, Amenov AA, Tagimanova DS (2017) Plant diversity and transcriptional variability assessed by retrotransposon-based molecular markers. Russ J Genet 21(1):128–134. https://doi.org/10.18699/vj17.231

    Article  Google Scholar 

  35. Kalendar R, Flavell AJ, Ellis THN, Sjakste T, Moisy C, Schulman AH (2011) Analysis of plant diversity with retrotransposon-based molecular markers. Heredity 106(4):520–530. https://doi.org/10.1038/hdy.2010.93

    Article  CAS  PubMed  Google Scholar 

  36. Smykal P, Bacova-Kerteszova N, Kalendar R, Corander J, Schulman AH, Pavelek M (2011) Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers. Theor Appl Genet 122(7):1385–1397. https://doi.org/10.1007/s00122-011-1539-2

    Article  CAS  PubMed  Google Scholar 

  37. Milovanov A, Zvyagin A, Daniyarov A, Kalendar R, Troshin L (2019) Genetic analysis of the grapevine genotypes of the Russian Vitis ampelographic collection using iPBS markers. Genetica 147(1):91–101. https://doi.org/10.1007/s10709-019-00055-5

    Article  PubMed  Google Scholar 

  38. Vuorinen A, Kalendar R, Fahima T, Korpelainen H, Nevo E, Schulman A (2018) Retrotransposon-based genetic diversity assessment in wild emmer wheat (Triticum turgidum ssp. dicoccoides). Agronomy 8(7):107. https://doi.org/10.3390/agronomy8070107

    Article  CAS  Google Scholar 

  39. Abdollahi Mandoulakani B, Yaniv E, Kalendar R, Raats D, Bariana HS, Bihamta MR, Schulman AH (2015) Development of IRAP- and REMAP-derived SCAR markers for marker-assisted selection of the stripe rust resistance gene Yr15 derived from wild emmer wheat. Theor Appl Genet 128(2):211–219. https://doi.org/10.1007/s00122-014-2422-8

    Article  CAS  PubMed  Google Scholar 

  40. Li S, Ramakrishnan M, Vinod KK, Kalendar R, Yrjälä K, Zhou M (2020) Development and deployment of high-throughput retrotransposon-based markers reveal genetic diversity and population structure of Asian bamboo. Forests 11(1):31. https://doi.org/10.3390/f11010031

    Article  CAS  Google Scholar 

  41. Ghonaim M, Kalendar R, Barakat H, Elsherif N, Ashry N, Schulman AH (2020) High-throughput retrotransposon-based genetic diversity of maize germplasm assessment and analysis. Mol Biol Rep. https://doi.org/10.1007/s11033-020-05246-4

  42. Tanhuanpää P, Erkkilä M, Kalendar R, Schulman AH, Manninen O (2016) Assessment of genetic diversity in Nordic timothy (Phleum pratense L.). Hereditas 153(1):5. https://doi.org/10.1186/s41065-016-0009-x

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tenhola-Roininen T, Kalendar R, Schulman AH, Tanhuanpaa P (2011) A doubled haploid rye linkage map with a QTL affecting alpha-amylase activity. J Appl Genet 52(3):299–304. https://doi.org/10.1007/s13353-011-0029-1

    Article  CAS  PubMed  Google Scholar 

  44. Tanhuanpaa P, Kalendar R, Laurila J, Schulman AH, Manninen O, Kiviharju E (2006) Generation of SNP markers for short straw in oat (Avena sativa L.). Genome 49(3):282–287. https://doi.org/10.1139/g05-100

    Article  CAS  PubMed  Google Scholar 

  45. Antonius-Klemola K, Kalendar R, Schulman AH (2006) TRIM retrotransposons occur in apple and are polymorphic between varieties but not sports. Theor Appl Genet 112(6):999–1008. https://doi.org/10.1007/s00122-005-0203-0

    Article  CAS  PubMed  Google Scholar 

  46. Tanhuanpaa P, Kalendar R, Schulman AH, Kiviharju E (2008) The first doubled haploid linkage map for cultivated oat. Genome 51(8):560–569. https://doi.org/10.1139/G08-040

    Article  CAS  PubMed  Google Scholar 

  47. Kan YW, Dozy AM (1978) Polymorphism of DNA sequence adjacent to human beta-globin structural gene: relationship to sickle mutation. Proc Natl Acad Sci U S A 75(11):5631–5635. https://doi.org/10.1073/pnas.75.11.5631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, Thomas BB, Powell W (1997) Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet 253(6):687–694. https://doi.org/10.1007/s004380050372

    Article  CAS  PubMed  Google Scholar 

  49. Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98(5):704–711. https://doi.org/10.1007/s001220051124

    Article  CAS  Google Scholar 

  50. Schulman AH, Kalendar R (2005) A movable feast: diverse retrotransposons and their contribution to barley genome dynamics. Cytogenet Genome Res 110(1-4):598–605. https://doi.org/10.1159/000084993

    Article  CAS  PubMed  Google Scholar 

  51. Vicient CM, Jaaskelainen MJ, Kalendar R, Schulman AH (2001) Active retrotransposons are a common feature of grass genomes. Plant Physiol 125(3):1283–1292. https://doi.org/10.1104/pp.125.3.1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kalendar R, Khassenov B, Ramanculov E, Samuilova O, Ivanov KI (2017) FastPCR: an in silico tool for fast primer and probe design and advanced sequence analysis. Genomics 109(3-4):312–319. https://doi.org/10.1016/j.ygeno.2017.05.005

    Article  CAS  PubMed  Google Scholar 

  53. Sorkheh K, Dehkordi MK, Ercisli S, Hegedus A, Halasz J (2017) Comparison of traditional and new generation DNA markers declares high genetic diversity and differentiated population structure of wild almond species. Sci Rep 7(1):5966. https://doi.org/10.1038/s41598-017-06084-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pearce SR, Stuart-Rogers C, Knox MR, Kumar A, Ellis TH, Flavell AJ (1999) Rapid isolation of plant Ty1-copia group retrotransposon LTR sequences for molecular marker studies. Plant J 19(6):711–717. https://doi.org/10.1046/j.1365-313x.1999.00556.x

    Article  CAS  PubMed  Google Scholar 

  55. Hirochika H, Hirochika R (1993) Ty1-copia group retrotransposons as ubiquitous components of plant genomes. Jpn J Genet 68(1):35–46. https://doi.org/10.1266/jjg.68.35

    Article  CAS  PubMed  Google Scholar 

  56. Flavell AJ, Dunbar E, Anderson R, Pearce SR, Hartley R, Kumar A (1992) Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res 20(14):3639–3644. https://doi.org/10.1093/nar/20.14.3639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ellis THN, Poyser SJ, Knox MR, Vershinin AV, Ambrose MJ (1998) Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea. Mol Gen Genet 260(1):9–19. https://doi.org/10.1007/PL00008630

    Article  CAS  PubMed  Google Scholar 

  58. Witte CP, Le QH, Bureau T, Kumar A (2001) Terminal-repeat retrotransposons in miniature (TRIM) are involved in restructuring plant genomes. Proc Natl Acad Sci U S A 98(24):13778–13783. https://doi.org/10.1073/pnas.241341898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kalendar R, Shustov AV, Seppänen MM, Schulman AH, Stoddard FL (2019) Palindromic sequence-targeted (PST) PCR: a rapid and efficient method for high-throughput gene characterization and genome walking. Sci Rep 9(1):17707. https://doi.org/10.1038/s41598-019-54168-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kalendar R, Antonius K, Smykal P, Schulman AH (2010) iPBS: a universal method for DNA fingerprinting and retrotransposon isolation. Theor Appl Genet 121(8):1419–1430. https://doi.org/10.1007/s00122-010-1398-2

    Article  CAS  PubMed  Google Scholar 

  61. Doungous O, Kalendar R, Filippova N, Ngane BK (2020) Utility of iPBS retrotransposons markers for molecular characterization of African Gnetum species. Plant Biosyst 154(5):587–592. https://doi.org/10.1080/11263504.2019.1651782

    Article  Google Scholar 

  62. Debladis E, Llauro C, Carpentier MC, Mirouze M, Panaud O (2017) Detection of active transposable elements in Arabidopsis thaliana using Oxford Nanopore sequencing technology. BMC Genomics 18(1):537. https://doi.org/10.1186/s12864-017-3753-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Qiu F, Ungerer MC (2018) Genomic abundance and transcriptional activity of diverse gypsy and copia long terminal repeat retrotransposons in three wild sunflower species. BMC Plant Biol 18(1):6. https://doi.org/10.1186/s12870-017-1223-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kalendar R, Lee D, Schulman AH (2011) Java web tools for PCR, in silico PCR, and oligonucleotide assembly and analysis. Genomics 98(2):137–144. https://doi.org/10.1016/j.ygeno.2011.04.009

    Article  CAS  PubMed  Google Scholar 

  65. Kalendar R, Lee D, Schulman AH (2014) FastPCR software for PCR, in silico PCR, and oligonucleotide assembly and analysis. Methods Mol Biol 1116:271–302. https://doi.org/10.1007/978-1-62703-764-8_18

    Article  CAS  PubMed  Google Scholar 

  66. Kalendar R, Muterko A, Shamekova M, Zhambakin K (2017) In silico PCR tools for a fast primer, probe, and advanced searching. Methods Mol Biol 1620:1–31. https://doi.org/10.1007/978-1-4939-7060-5_1

    Article  CAS  PubMed  Google Scholar 

  67. Kalendar R, Tselykh TV, Khassenov B, Ramanculov EM (2017) Introduction on using the FastPCR software and the related Java web tools for PCR and oligonucleotide assembly and analysis. Methods Mol Biol 1620:33–64. https://doi.org/10.1007/978-1-4939-7060-5_2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Government of Perm Krai, research project no. С-26/174.3 on January 31, 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruslan Kalendar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kalendar, R., Muterko, A., Boronnikova, S. (2021). Retrotransposable Elements: DNA Fingerprinting and the Assessment of Genetic Diversity. In: Besse, P. (eds) Molecular Plant Taxonomy. Methods in Molecular Biology, vol 2222. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0997-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0997-2_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0996-5

  • Online ISBN: 978-1-0716-0997-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics