Skip to main content

Generation of Primordial Germ Cell-like Cells on Small and Large Scales

  • Protocol
  • First Online:
Epigenetic Reprogramming During Mouse Embryogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2214))

Abstract

The specification and development of germ cells to gametes is a unique process, which is of great biological and clinical relevance. In mammals, the founding cells of the germline are primordial germ cells (PGCs), which arise during early embryogenesis. The low number of PGCs within the developing embryo limits the study of these cells in model organisms. The generation of PGC-like cells (PGCLCs) from murine pluripotent stem cells reconstitutes the earliest stages of germ cell development and mitigates the technical constraints of studying this developmental process in vivo. Here, we describe the technical details of the PGCLC specification approach and illustrate adaptations designed to improve compatibility with methods such as chromatin immunoprecipitation by increasing the yield of PGCLC generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tang WW, Kobayashi T, Irie N, Dietmann S, Surani MA (2016) Specification and epigenetic programming of the human germ line. Nat Rev Genet 17(10):585–600. https://doi.org/10.1038/nrg.2016.88

    Article  PubMed  CAS  Google Scholar 

  2. Ohinata Y, Payer B, O’Carroll D, Ancelin K, Ono Y, Sano M, Barton SC, Obukhanych T, Nussenzweig M, Tarakhovsky A, Saitou M, Surani MA (2005) Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 436(7048):207–213. https://doi.org/10.1038/nature03813

    Article  PubMed  CAS  Google Scholar 

  3. Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou M (2011) Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146(4):519–532. https://doi.org/10.1016/j.cell.2011.06.052

    Article  PubMed  CAS  Google Scholar 

  4. Hayashi K, Ogushi S, Kurimoto K, Shimamoto S, Ohta H, Saitou M (2012) Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science 338(6109):971–975. https://doi.org/10.1126/science.1226889

    Article  PubMed  CAS  Google Scholar 

  5. Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A (2008) The ground state of embryonic stem cell self-renewal. Nature 453(7194):519–523. https://doi.org/10.1038/nature06968

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Brons IG, Smithers LE, Trotter MW, Rugg-Gunn P, Sun B, Chuva de Sousa Lopes SM, Howlett SK, Clarkson A, Ahrlund-Richter L, Pedersen RA, Vallier L (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448(7150):191–195. https://doi.org/10.1038/nature05950

    Article  PubMed  CAS  Google Scholar 

  7. Ohinata Y, Ohta H, Shigeta M, Yamanaka K, Wakayama T, Saitou M (2009) A signaling principle for the specification of the germ cell lineage in mice. Cell 137(3):571–584. https://doi.org/10.1016/j.cell.2009.03.014

    Article  PubMed  CAS  Google Scholar 

  8. Hikabe O, Hamazaki N, Nagamatsu G, Obata Y, Hirao Y, Hamada N, Shimamoto S, Imamura T, Nakashima K, Saitou M, Hayashi K (2016) Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature 539(7628):299–303. https://doi.org/10.1038/nature20104

    Article  PubMed  CAS  Google Scholar 

  9. Ohta H, Kurimoto K, Okamoto I, Nakamura T, Yabuta Y, Miyauchi H, Yamamoto T, Okuno Y, Hagiwara M, Shirane K, Sasaki H, Saitou M (2017) In vitro expansion of mouse primordial germ cell-like cells recapitulates an epigenetic blank slate. EMBO J 36(13):1888–1907. https://doi.org/10.15252/embj.201695862

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Payer B, Chuva de Sousa Lopes SM, Barton SC, Lee C, Saitou M, Surani MA (2006) Generation of stella-GFP transgenic mice: a novel tool to study germ cell development. Genesis 44(2):75–83. https://doi.org/10.1002/gene.20187

    Article  PubMed  CAS  Google Scholar 

  11. Weber S, Eckert D, Nettersheim D, Gillis AJ, Schafer S, Kuckenberg P, Ehlermann J, Werling U, Biermann K, Looijenga LH, Schorle H (2010) Critical function of AP-2 gamma/TCFAP2C in mouse embryonic germ cell maintenance. Biol Reprod 82(1):214–223. https://doi.org/10.1095/biolreprod.109.078717

    Article  PubMed  CAS  Google Scholar 

  12. Yoshimizu T, Sugiyama N, De Felice M, Yeom YI, Ohbo K, Masuko K, Obinata M, Abe K, Scholer HR, Matsui Y (1999) Germline-specific expression of the Oct-4/green fluorescent protein (GFP) transgene in mice. Develop Growth Differ 41(6):675–684

    Article  CAS  Google Scholar 

  13. Marks H, Kalkan T, Menafra R, Denissov S, Jones K, Hofemeister H, Nichols J, Kranz A, Stewart AF, Smith A, Stunnenberg HG (2012) The transcriptional and epigenomic foundations of ground state pluripotency. Cell 149(3):590–604. https://doi.org/10.1016/j.cell.2012.03.026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Hackett JA, Kobayashi T, Dietmann S, Surani MA (2017) Activation of lineage regulators and transposable elements across a pluripotent spectrum. Stem Cell Reports 8(6):1645–1658. https://doi.org/10.1016/j.stemcr.2017.05.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Tischler J, Gruhn WH, Reid J, Allgeyer E, Buettner F, Marr C, Theis F, Simons BD, Wernisch L, Surani MA (2019) Metabolic regulation of pluripotency and germ cell fate through alpha-ketoglutarate. EMBO J 38(1):e99518. https://doi.org/10.15252/embj.201899518

    Article  PubMed  CAS  Google Scholar 

  16. Sybirna A, Tang WWC, Pierson Smela M, Dietmann S, Gruhn WH, Brosh R, Surani MA (2020) A critical but divergent role of PRDM14 in human primordial germ cell fate revealed by inducible degrons. Nat Commun 11(1):1282. https://doi.org/10.1038/s41467-020-15042-0

Download references

Acknowledgements

This work was kindly supported by Professor Azim Surani and the Wellcome Trust Senior Investigator grant (RG92113) awarded to Professor Azim Surani. U.G. is supported by a Sofja Kovalevskaja Award of the Humboldt foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram H. Gruhn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gruhn, W.H., Günesdogan, U. (2021). Generation of Primordial Germ Cell-like Cells on Small and Large Scales. In: Ancelin, K., Borensztein, M. (eds) Epigenetic Reprogramming During Mouse Embryogenesis. Methods in Molecular Biology, vol 2214. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0958-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0958-3_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0957-6

  • Online ISBN: 978-1-0716-0958-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics