Skip to main content

Understanding Chromosome Structure During Early Mouse Development by a Single-Cell Hi-C Analysis

  • Protocol
  • First Online:
Epigenetic Reprogramming During Mouse Embryogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2214))

Abstract

Over the past two decades, the development of chromosome conformation capture technologies has allowed to intensively probe the properties of genome folding in various cell types. High-throughput versions of these C-based assays (named Hi-C) have released the mapping of 3D chromosome folding for the entire genomes. Applied to mammalian preimplantation embryos, it has revealed a unique chromosome organization after fertilization when a new individual is being formed. However, the questions of whether specific structures could arise depending on their parental origins or of their transcriptional status remain open. Our method chapter is dedicated to the technical description on how applying scHi-C to mouse embryos at different stages of preimplantation development. This approach capitalized with the limited amount of material available at these developmental stages. It also provides new research avenues, such as the study of mutant embryos for further functional studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kempfer R, Pombo A (2019) Methods for mapping 3D chromosome architecture. Nat Rev Genet. https://doi.org/10.1038/s41576-019-0195-2

  2. Bickmore WA, van Steensel B (2013) Genome architecture: domain organization of interphase chromosomes. Cell 152:1270–1284. https://doi.org/10.1016/j.cell.2013.02.001

    Article  CAS  PubMed  Google Scholar 

  3. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293. https://doi.org/10.1126/science.1181369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y et al (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–380. https://doi.org/10.1038/nature11082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N et al (2012) Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485(7398):381–385. https://doi.org/10.1038/nature11049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W et al (2013) Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502:59–64. https://doi.org/10.1038/nature12593

    Article  CAS  PubMed  Google Scholar 

  7. Nagano T, Lubling Y, Várnai C, Dudley C, Leung W, Baran Y et al (2017) Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature 547:61–67. https://doi.org/10.1038/nature23001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Eckersley-Maslin MA, Alda-Catalinas C, Reik W (2018) Dynamics of the epigenetic landscape during the maternal-to-zygotic transition. Nat Rev Mol Cell Biol 19:436–450. https://doi.org/10.1038/s41580-018-0008-z

    Article  CAS  PubMed  Google Scholar 

  9. Flyamer IM, Gassler J, Imakaev M, Brandão HB, Ulianov SV, Abdennur N et al (2017) Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature 544:110–114. https://doi.org/10.1038/nature21711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lu F, Liu Y, Inoue A, Suzuki T, Zhao K, Zhang Y (2016) Establishing chromatin regulatory landscape during mouse preimplantation development. Cell 165:1375–1388. https://doi.org/10.1016/j.cell.2016.05.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Du Z, Zheng H, Huang B, Ma R, Wu J, Zhang X et al (2017) Allelic reprogramming of 3D chromatin architecture during early mammalian development. Nature 547:232–235. https://doi.org/10.1038/nature23263

    Article  CAS  PubMed  Google Scholar 

  12. Collombet S, Ranisavljevic N, Nagano T et al (2020) Parental-to-embryo switch of chromosome organization in early embryogenesis. Nature 580:142–146. https://doi.org/10.1038/s41586-020-2125-z

    Article  CAS  PubMed  Google Scholar 

  13. Nagano T, Lubling Y, Yaffe E, Wingett SW, Dean W, Tanay A et al (2015) Single-cell Hi-C for genome-wide detection of chromatin interactions that occur simultaneously in a single cell. Nat Protoc 10:1986–2003. https://doi.org/10.1038/nprot.2015.127

    Article  CAS  PubMed  Google Scholar 

  14. Hogan B, Beddington R, Costantini F (1994) Manipulating the mouse embryo: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. https://doi.org/10.1007/978-1-60327-019-9_13

    Book  Google Scholar 

Download references

Acknowledgments

We thank Edith Heard for her strong scientific commitment and constant support during this project. We thank Takashi Nagano and Peter Fraser for their experimental expertise and technical support during the optimization of the Hi-C procedure on single mouse blastomeres. We thank the Institut Curie Animal facility for animal welfare and husbandry. This work was supported by FRM FDM20140630223 and FDM 40917 to N.R. and by funding allocated to Pr Edith Heard (Labex DEEP, ANR-11-LBX-0044; IDEX PSL, ANR-10-IDEX-0001-02 PSL).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Noémie Ranisavljevic or Katia Ancelin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ranisavljevic, N., Borensztein, M., Ancelin, K. (2021). Understanding Chromosome Structure During Early Mouse Development by a Single-Cell Hi-C Analysis. In: Ancelin, K., Borensztein, M. (eds) Epigenetic Reprogramming During Mouse Embryogenesis. Methods in Molecular Biology, vol 2214. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0958-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0958-3_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0957-6

  • Online ISBN: 978-1-0716-0958-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics