Skip to main content

Studying DNA Methylation Genome-Wide by Bisulfite Sequencing from Low Amounts of DNA in Mammals

  • Protocol
  • First Online:
Epigenetic Reprogramming During Mouse Embryogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2214))

Abstract

DNA methylation is extensively reprogrammed during mammalian embryogenesis and germ cell development. Protocols for genome-wide bisulfite sequencing enable the quantification of DNA methylation with high precision and single base-pair resolution; however they can be limited by the necessity for high amounts of DNA. Here we describe optimized reduced representation bisulfite sequencing (RRBS) and whole genome bisulfite sequencing (WGBS) protocols for low amounts of DNA, which include steps to estimate the minimal number of PCR cycles needed for the final library preparation to minimize PCR biases. These protocols require no more than 5 ng DNA and can easily be applied to mammalian cells available in small quantities such as early embryos or primordial germ cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Greenberg MVC, Bourc’his D (2019) The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol 20:590–607. https://doi.org/10.1038/s41580-019-0159-6

    Article  CAS  PubMed  Google Scholar 

  2. Messerschmidt DM, Knowles BB, Solter D (2014) DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev 28:812–828. https://doi.org/10.1101/gad.234294.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lister R, Pelizzola M, Dowen RH et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322. https://doi.org/10.1038/nature08514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ziller MJ, Stamenova EK, Gu H et al (2016) Targeted bisulfite sequencing of the dynamic DNA methylome. Epigenetics Chromatin 9:55. https://doi.org/10.1186/s13072-016-0105-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee EJ, Pei L, Srivastava G et al (2011) Targeted bisulfite sequencing by solution hybrid selection and massively parallel sequencing. Nucleic Acids Res 39:e127. https://doi.org/10.1093/nar/gkr598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li Q, Suzuki M, Wendt J et al (2015) Post-conversion targeted capture of modified cytosines in mammalian and plant genomes. Nucleic Acids Res 43:e81. https://doi.org/10.1093/nar/gkv244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Allum F, Shao X, Guenard F et al (2015) Characterization of functional methylomes by next-generation capture sequencing identifies novel disease-associated variants. Nat Commun 6:7211. https://doi.org/10.1038/ncomms8211

    Article  PubMed  Google Scholar 

  8. Gu H, Smith ZD, Bock C et al (2011) Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat Protoc 6:468–481. https://doi.org/10.1038/nprot.2010.190

    Article  CAS  PubMed  Google Scholar 

  9. Meissner A, Gnirke A, Bell GW et al (2005) Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res 33:5868–5877. https://doi.org/10.1093/nar/gki901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bock C, Tomazou EM, Brinkman AB et al (2010) Quantitative comparison of genome-wide DNA methylation mapping technologies. Nat Biotechnol 28:1106–1114. https://doi.org/10.1038/nbt.1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhou L, Ng HK, Drautz-Moses DI et al (2019) Systematic evaluation of library preparation methods and sequencing platforms for high-throughput whole genome bisulfite sequencing. Sci Rep 9:10383. https://doi.org/10.1038/s41598-019-46875-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Weber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bender, A., Al Adhami, H., Dahlet, T., Weber, M. (2021). Studying DNA Methylation Genome-Wide by Bisulfite Sequencing from Low Amounts of DNA in Mammals. In: Ancelin, K., Borensztein, M. (eds) Epigenetic Reprogramming During Mouse Embryogenesis. Methods in Molecular Biology, vol 2214. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0958-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0958-3_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0957-6

  • Online ISBN: 978-1-0716-0958-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics