Skip to main content

Mapping of Chromosome Territories by 3D-Chromosome Painting During Early Mouse Development

  • Protocol
  • First Online:
Epigenetic Reprogramming During Mouse Embryogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2214))

Abstract

Following fertilization in mammals, the chromatin landscape inherited from the two parental genomes and the nuclear organization are extensively reprogrammed. A tight regulation of nuclear organization is important for developmental success. One main nuclear feature is the organization of the chromosomes in discrete and individual nuclear spaces known as chromosome territories (CTs). In culture cells, their arrangements can be constrained depending on their genomic content (e.g., gene density or repeats) or by specific nuclear constrains such as the periphery or the nucleolus. However, during the early steps of mouse embryonic development, much less is known, specifically regarding how and when the two parental genomes intermingle. Here, we describe a three-dimensional fluorescence in situ hybridization (3D-FISH) for chromosome painting (3D-ChromoPaint) optimized to gain understanding in nuclear organization of specific CTs following fertilization. Our approach preserves the nuclear structure, and the acquired images allow full spatial analysis of interphase chromosome positioning and morphology across the cell cycle and during early development. This method will be useful in understanding the dynamics of chromosome repositioning during development as well as the alteration of chromosome territories upon changes in transcriptional status during key developmental steps. This protocol can be adapted to any other species or organoids in culture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burton A, Torres-Padilla M-E (2010) Epigenetic reprogramming and development: a unique heterochromatin organization in the preimplantation mouse embryo. Brief Funct Genomics 9:444–454. https://doi.org/10.1093/bfgp/elq027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Borsos M, Torres-Padilla M-E (2016) Building up the nucleus: nuclear organization in the establishment of totipotency and pluripotency during mammalian development. Genes Dev 15:611–621. https://doi.org/10.1101/gad.273805.115

    Article  CAS  Google Scholar 

  3. Zheng H, Huang B, Zhang B et al (2016) Resetting epigenetic memory by reprogramming of histone modifications in mammals. Mol Cell 63:1066–1079. https://doi.org/10.1016/j.molcel.2016.08.032

    Article  CAS  PubMed  Google Scholar 

  4. Probst AV, Almouzni G (2008) Pericentric heterochromatin: dynamic organization during early development in mammals. Differentiation 76:15–23. https://doi.org/10.1111/j.1432-0436.2007.00220.x

    Article  CAS  PubMed  Google Scholar 

  5. Borsos M, Perricone SM, Schauer T et al (2019) Genome–lamina interactions are established de novo in the early mouse embryo. Nature 569:729–733. https://doi.org/10.1038/s41586-019-1233-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Martin C, Beaujean N, Brochard V et al (2006) Genome restructuring in mouse embryos during reprogramming and early development. Dev Biol 292:317–332. https://doi.org/10.1016/j.ydbio.2006.01.009

    Article  CAS  PubMed  Google Scholar 

  7. Aguirre-Lavin T, Adenot P, Bonnet-Garnier A et al (2012) 3D-FISH analysis of embryonic nuclei in mouse highlights several abrupt changes of nuclear organization during preimplantation development. BMC Dev Biol 12:30. https://doi.org/10.1186/1471-213X-12-30

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fulka H, Aoki F (2016) Nucleolus precursor bodies and ribosome biogenesis in early mammalian embryos: old theories and new discoveries. Biol Reprod 94(6):143. https://doi.org/10.1095/biolreprod.115.136093

    Article  CAS  PubMed  Google Scholar 

  9. Martin C, Brochard V, Carole M et al (2006) Architectural reorganization of the nuclei upon transfer into oocytes accompanies genome reprogramming. Mol Reprod Dev 73:1102–1111. https://doi.org/10.1002/mrd.20506

    Article  CAS  PubMed  Google Scholar 

  10. Burns KH, Viveiros MM, Ren Y et al (2003) Roles of NPM2 in chromatin and nucleolar organization in oocytes and embryos. Science 300:633–636. https://doi.org/10.1126/science.1081813

    Article  CAS  PubMed  Google Scholar 

  11. Cremer T, Cremer M (2010) Chromosome territories. Cold Spring Harb Perspect Biol 2:1–22. https://doi.org/10.1101/cshperspect.a003889

    Article  CAS  Google Scholar 

  12. Lieberman-Aiden E, Van Berkum NL, Williams L et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the Human Genome. Science 326:289–294. https://doi.org/10.1126/science.1181369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Flyamer IM, Gassler J, Imakaev M et al (2017) Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature 544:110–114. https://doi.org/10.1038/nature21711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Du Z, Zheng H, Huang B et al (2017) Allelic reprogramming of 3D chromatin architecture during early mammalian development. Nature 547:232–235. https://doi.org/10.1038/nature23263

    Article  CAS  PubMed  Google Scholar 

  15. Ke Y, Xu Y, Chen X et al (2017) 3D chromatin structures of mature gametes and structural reprogramming during mammalian embryogenesis. Cell 170:367–381.e20. https://doi.org/10.1016/j.cell.2017.06.029

    Article  CAS  PubMed  Google Scholar 

  16. Du Z, Zheng H, Kawamura Y et al (2020) Polycomb group proteins regulate chromatin architecture in mouse oocytes and early embryos article polycomb group proteins regulate chromatin architecture in mouse oocytes and early embryos. Mol Cell Biol 77:1–15. https://doi.org/10.1016/j.molcel.2019.11.011

    Article  CAS  Google Scholar 

  17. Collombet S, Ranisavljevic N, Nagano T et al (2020) Parental-to-embryo switch of chromosome organization in early embryogenesis. Nature 580:142–146. https://doi.org/10.1038/s41586-020-2125-z

    Article  CAS  PubMed  Google Scholar 

  18. Galupa R, Heard E (2018) X-chromosome inactivation: a crossroads between chromosome architecture and gene regulation. Annu Rev Genet 52:535–566. https://doi.org/10.1146/annurev-genet-120116-024611

    Article  CAS  PubMed  Google Scholar 

  19. Croft JA, Bridger JM, Boyle S et al (1999) Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol 145:1119–1131. https://doi.org/10.1083/jcb.145.6.1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Koehler D, Zakhartchenko V, Froenicke L et al (2009) Changes of higher order chromatin arrangements during major genome activation in bovine preimplantation embryos. Exp Cell Res 315:2053–2063. https://doi.org/10.1016/j.yexcr.2009.02.016

    Article  CAS  PubMed  Google Scholar 

  21. Heride C, Ricoul M, Kiêu K et al (2010) Distance between homologous chromosomes results from chromosome positioning constraints. J Cell Sci 123:4063–4075. https://doi.org/10.1242/jcs.066498

    Article  CAS  PubMed  Google Scholar 

  22. Zhang LF, Huynh KD, Lee JT (2007) Perinucleolar targeting of the inactive X during S phase: evidence for a role in the maintenance of silencing. Cell 129:693–706. https://doi.org/10.1016/j.cell.2007.03.036

    Article  CAS  PubMed  Google Scholar 

  23. Namekawa SH, Payer B, Huynh KD et al (2010) Two-step imprinted X inactivation: repeat versus genic silencing in the mouse. Mol Cell Biol 30:3187–3205. https://doi.org/10.1128/mcb.00227-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ranisavljevic N, Okamoto I, Heard E, Ancelin K (2017) RNA FISH to study zygotic genome activation in early mouse embryos. Methods Mol Biol 1605:133–145. https://doi.org/10.1007/978-1-4939-6988-3_9

    Article  CAS  PubMed  Google Scholar 

  25. Hogan B, Beddington R, Costantini F, Facy E (1994) Manipulating the mouse embryo. Cold Sring Harbor Laboratory Press, New York

    Google Scholar 

Download references

Acknowledgments

We thank the Institut Curie animal facility for animal welfare and husbandry and the imaging facility PICT-IBiSA@BDD (member of France-Bioimaging ANR-10-INBS-04 and UMR3215/U934) for technical assistance. This work was supported by ANR-09-Blanc-0114 to METP and EH and Labex DEEP:ANR-11-LBX-0044, IDEX PSL: ANR-10-IDEX-0001-02 PSL to E.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katia Ancelin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ancelin, K., Miyanari, Y., Leroy, O., Torres-Padilla, ME., Heard, E. (2021). Mapping of Chromosome Territories by 3D-Chromosome Painting During Early Mouse Development. In: Ancelin, K., Borensztein, M. (eds) Epigenetic Reprogramming During Mouse Embryogenesis. Methods in Molecular Biology, vol 2214. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0958-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0958-3_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0957-6

  • Online ISBN: 978-1-0716-0958-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics