Skip to main content

The Combined Analysis of Pleiotropy and Epistasis (CAPE)

  • Protocol
  • First Online:
Epistasis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2212))

Abstract

Epistasis, or gene–gene interaction, contributes substantially to trait variation in organisms ranging from yeast to humans, and modeling epistasis directly is critical to understanding the genotype–phenotype map. However, inference of genetic interactions is challenging compared to inference of individual allele effects due to low statistical power. Furthermore, genetic interactions can appear inconsistent across different quantitative traits, presenting a challenge for the interpretation of detected interactions. Here we present a method called the Combined Analysis of Pleiotropy and Epistasis (CAPE) that combines information across multiple quantitative traits to infer directed epistatic interactions. By combining information across multiple traits, CAPE not only increases power to detect genetic interactions but also interprets these interactions across traits to identify a single interaction that is consistent across all observed data. This method generates informative, interpretable interaction networks that explain how variants interact with each other to influence groups of related traits. This method could potentially be used to link genetic variants to gene expression, physiological endophenotypes, and higher-level disease traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Forsberg SKG, Bloom JS, Sadhu MJ, Kruglyak L, Carlborg O (2017) Accounting for genetic interactions improves modeling of individual quantitative trait phenotypes in yeast. Nat Genet 139:1455

    Google Scholar 

  2. Hunter P (2018) Genomics yields fresh insights on plant domestication: understanding the process of domestication can help to guide breeding efforts in plants. EMBO Rep 19(11):e47153

    Article  Google Scholar 

  3. Wijnen CL, Botet R, Van De Belt J, Deurhof L, De Jong H, De Snoo CB, Dirks R, Boer MP, Van Eeuwijk FA, Wijnker E et al (2018) A complete chromosome substitution mapping panel reveals genome-wide epistasis in Arabidopsis. bioRxiv, 436154. https://doi.org/10.1101/436154

  4. Mathew B, Léon J, Sannemann W, Sillanpää MJ (2018) Detection of epistasis for flowering time using Bayesian multilocus estimation in a barley MAGIC population. Genetics 208(2):525–536

    Article  CAS  Google Scholar 

  5. Li B, Tang M, Nelson A, Caligagan H, Zhou X, Clark-Wiest C, Ngo R, Brady SM, Kliebenstein DJ (2018) Network-guided discovery of extensive epistasis between transcription factors involved in aliphatic glucosinolate biosynthesis. Plant Cell 30(1):178–195

    Article  CAS  Google Scholar 

  6. Mackay TF, Huang W (2018) Charting the genotype–phenotype map: lessons from the Drosophila melanogaster genetic reference panel. Wiley Interdiscip Rev Dev Biol 7(1):e289

    Article  Google Scholar 

  7. Domínguez-García S, García C, Quesada H, Caballero A (2019) Accelerated inbreeding depression suggests synergistic epistasis for deleterious mutations in Drosophila melanogaster. Heredity 123(6):709–722

    Article  Google Scholar 

  8. Behrman EL, Howick VM, Kapun M, Staubach F, Bergland AO, Petrov DA, Lazzaro BP, Schmidt PS (2018) Rapid seasonal evolution in innate immunity of wild Drosophila melanogaster. Proc R Soc B Biol Sci 285(1870):20172599

    Google Scholar 

  9. Rau CD, Gonzales NM, Park D, Palmer AA, Lusis AJ, Zaitlen N (2019) The effects of mutations are modified by genetic background in mice. bioRxiv, 555383. https://doi.org/10.1101/555383

  10. Hickmott JW, Gunawardane U, Jensen K, Korecki AJ, Simpson EM (2018) Epistasis between Pax6 Sey and genetic background reinforces the value of defined hybrid mouse models for therapeutic trials. Gene Ther 25(8):524

    Article  CAS  Google Scholar 

  11. Shao H, Burrage LC, Sinasac DS, Hill AE, Ernest SR, O’Brien W, Courtland HW, Jepsen KJ, Kirby A, Kulbokas EJ et al (2008) Genetic architecture of complex traits: large phenotypic effects and pervasive epistasis. Proc Natl Acad Sci 105(50):19910–19914

    Article  CAS  Google Scholar 

  12. Lehner B (2011), Molecular mechanisms of epistasis within and between genes. Trends Genet 27(8):323–331

    Article  CAS  Google Scholar 

  13. Domingo J, Baeza-Centurion P, Lehner B (2019) The causes and consequences of genetic interactions (epistasis). Annu Rev Genomics Hum Genet 20:433–460

    Article  CAS  Google Scholar 

  14. Kemble HE, Eisenhauer C, Couce A, Chapron A, Magnan M, Gautier G, Le Nagard H, Nghe P, Tenaillon O (2018) The molecular basis of genetic interaction diversity in a metabolic pathway. bioRxiv, 362327. https://doi.org/10.1101/362327

  15. Xie T, Akbar S, Stathopoulou MG, Oster T, Masson C, Yen FT, Visvikis-Siest S (2018) Epistatic interaction of apolipoprotein E and lipolysis-stimulated lipoprotein receptor genetic variants is associated with Alzheimer’s disease. Neurobiol Aging 69:292-e1

    Article  Google Scholar 

  16. Tyler AL, Ji B, Gatti DM, Munger SC, Churchill GA, Svenson KL, Carter GW (2017) Epistatic networks jointly influence phenotypes related to metabolic disease and gene expression in diversity outbred mice. Genetics 206(2):621–639

    Article  CAS  Google Scholar 

  17. Tyler AL, Mahoney JM, Carter GW (2020) Genetic interactions affect lung function in patients with systemic sclerosis. G3 10(1):151–163

    Article  CAS  Google Scholar 

  18. Hahn LW, Ritchie MD, Moore JH (2003) Multifactor dimensionality reduction software for detecting gene–gene and gene–environment interactions. Bioinformatics 19(3):376–382

    Article  CAS  Google Scholar 

  19. Schüpbach T, Xenarios I, Bergmann S, Kapur K (2010) FastEpistasis: a high performance computing solution for quantitative trait epistasis. Bioinformatics 26(11):1468–1469

    Article  Google Scholar 

  20. Kam-Thong T, Czamara D, Tsuda K, Borgwardt K, Lewis CM, Erhardt-Lehmann A, Hemmer B, Rieckmann P, Daake M, Weber F et al (2011) EPIBLASTER-fast exhaustive two-locus epistasis detection strategy using graphical processing units. Eur J Hum Gen 19(4):465

    Article  CAS  Google Scholar 

  21. Zhu S, Fang G (2018) MatrixEpistasis: ultrafast, exhaustive epistasis scan for quantitative traits with covariate adjustment. Bioinformatics 34(14):2341–2348

    Article  CAS  Google Scholar 

  22. Carter GW, Hays M, Sherman A, Galitski T (2012), Use of pleiotropy to model genetic interactions in a population. PLoS Genet 8(10):e1003010

    Article  CAS  Google Scholar 

  23. Carter GW (2013) Inferring gene function and network organization in Drosophila signaling by combined analysis of pleiotropy and epistasis. G3 3(5):807–814

    Article  CAS  Google Scholar 

  24. Tyler AL, Donahue LR, Churchill GA, Carter GW (2016), Weak epistasis generally stabilizes phenotypes in a mouse intercross. PLoS Genet 12(2):e1005805–22

    Article  Google Scholar 

  25. Broman KW, Wu H, Sen S, Churchill GA (2003), R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  CAS  Google Scholar 

  26. Broman KW, Gatti DM, Simecek P, Furlotte NA, Prins P, Sen Ś, Yandell BS, Churchill GA (2019) R/qtl2: software for mapping quantitative trait loci with high-dimensional data and multiparent populations. Genetics 211(2):495–502

    Article  CAS  Google Scholar 

  27. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, De Bakker PI, Daly MJ et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575

    Article  CAS  Google Scholar 

  28. Svenson KL, Gatti DM, Valdar W, Welsh CE, Cheng R, Chesler EJ, Palmer AA, McMillan L, Churchill GA (2012) High-resolution genetic mapping using the mouse diversity outbred population. Genetics 190(2):437–447

    Article  CAS  Google Scholar 

  29. Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008) Efficient control of population structure in model organism association mapping. Genetics 178(3):1709–1723

    Article  Google Scholar 

  30. Yang J, Zaitlen NA, Goddard ME, Visscher PM, Price AL (2014) Advantages and pitfalls in the application of mixed-model association methods. Nat Genet 46(2):100–106

    Article  Google Scholar 

  31. Sul JH, Martin LS, Eskin E (2018) Population structure in genetic studies: confounding factors and mixed models. PLoS Genet 14(12):e1007309–22

    Article  Google Scholar 

  32. Gelman A, Hill J (2006) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, Cambridge

    Book  Google Scholar 

  33. Bevington P (1994) Data reduction and error analysis for the physical sciences. McGraw-Hill, New York

    Google Scholar 

  34. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6(2), 65–70

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna L. Tyler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tyler, A.L., Emerson, J., El Kassaby, B., Wells, A.E., Philip, V.M., Carter, G.W. (2021). The Combined Analysis of Pleiotropy and Epistasis (CAPE). In: Wong, KC. (eds) Epistasis. Methods in Molecular Biology, vol 2212. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0947-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0947-7_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0946-0

  • Online ISBN: 978-1-0716-0947-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics