Skip to main content

Trigenic Synthetic Genetic Array (τ-SGA) Technique for Complex Interaction Analysis

  • Protocol
  • First Online:
Book cover Epistasis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2212))

Abstract

Complex genetic interactions occur when mutant alleles of multiple genes combine to elicit an unexpected phenotype, which could not be predicted given the expectation based on the combination of phenotypes associated with individual mutant alleles. Trigenic Synthetic Genetic Array (τ-SGA) methodology was developed for the systematic analysis of complex interactions involving combinations of three gene perturbations. With a series of replica pinning steps of the τ-SGA procedure, haploid triple mutants are constructed through automated mating and meiotic recombination. For example, a double-mutant query strain carrying two mutant alleles of interest, such as a deletion allele of a nonessential gene and a conditional temperature-sensitive allele of an essential gene, is crossed to an input array of yeast mutants, such as the diagnostic array set of ~1200 mutants, to generate an output array of triple mutants. The colony-size measurements of the resulting triple mutants are used to estimate cellular fitness and quantify trigenic interactions by incorporating corresponding single- and double-mutant fitness estimates. Trigenic interaction networks can be further analyzed for functional modules using various clustering and enrichment analysis tools. Complex genetic interactions are rich in functional information and provide insight into the genotype-to-phenotype relationship, genome size, and speciation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hartman JL, Garvik B, Hartwell L (2001) Principles for the buffering of genetic variation. Science 291(5506):1001–1004

    Article  CAS  PubMed  Google Scholar 

  2. Zuk O, Hechter E, Sunyaev SR, Lander ES (2012) The mystery of missing heritability: genetic interactions create phantom heritability. Proc Natl Acad Sci U S A 109(4):1193–1198. https://doi.org/10.1073/pnas.1119675109

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bloom JS, Ehrenreich IM, Loo WT, Lite TL, Kruglyak L (2013) Finding the sources of missing heritability in a yeast cross. Nature 494(7436):234–237. https://doi.org/10.1038/nature11867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bloom JS, Kotenko I, Sadhu MJ, Treusch S, Albert FW, Kruglyak L (2015) Genetic interactions contribute less than additive effects to quantitative trait variation in yeast. Nat Commun 6:8712. https://doi.org/10.1038/ncomms9712

    Article  CAS  PubMed  Google Scholar 

  5. Wang W, Xu ZZ, Costanzo M, Boone C, Lange CA, Myers CL (2017) Pathway-based discovery of genetic interactions in breast cancer. PLoS Genet 13(9):e1006973. https://doi.org/10.1371/journal.pgen.1006973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fang G, Wang W, Paunic V, Heydari H, Costanzo M, Liu X, Liu X, VanderSluis B, Oately B, Steinbach M, Van Ness B, Schadt EE, Pankratz ND, Boone C, Kumar V, Myers CL (2019) Discovering genetic interactions bridging pathways in genome-wide association studies. Nat Commun 10(1):4274. https://doi.org/10.1038/s41467-019-12131-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Costanzo M, VanderSluis B, Koch EN, Baryshnikova A, Pons C, Tan G, Wang W, Usaj M, Hanchard J, Lee SD, Pelechano V, Styles EB, Billmann M, van Leeuwen J, van Dyk N, Lin ZY, Kuzmin E, Nelson J, Piotrowski JS, Srikumar T, Bahr S, Chen Y, Deshpande R, Kurat CF, Li SC, Li Z, Usaj MM, Okada H, Pascoe N, San Luis BJ, Sharifpoor S, Shuteriqi E, Simpkins SW, Snider J, Suresh HG, Tan Y, Zhu H, Malod-Dognin N, Janjic V, Przulj N, Troyanskaya OG, Stagljar I, Xia T, Ohya Y, Gingras AC, Raught B, Boutros M, Steinmetz LM, Moore CL, Rosebrock AP, Caudy AA, Myers CL, Andrews B, Boone C (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353(6306). https://doi.org/10.1126/science.aaf1420

  8. Kuzmin E, VanderSluis B, Wang W, Tan G, Deshpande R, Chen Y, Usaj M, Balint A, Mattiazzi Usaj M, van Leeuwen J, Koch EN, Pons C, Dagilis AJ, Pryszlak M, Wang JZY, Hanchard J, Riggi M, Xu K, Heydari H, San Luis BJ, Shuteriqi E, Zhu H, Van Dyk N, Sharifpoor S, Costanzo M, Loewith R, Caudy A, Bolnick D, Brown GW, Andrews BJ, Boone C, Myers CL (2018) Systematic analysis of complex genetic interactions. Science 360(6386). https://doi.org/10.1126/science.aao1729

  9. Bateson WRSE, Punnett RC, Hurst CC (1905) Reports to the evolution Committee of the Royal Society, report II. Harrison and Sons, London

    Google Scholar 

  10. Baryshnikova A, Costanzo M, Kim Y, Ding H, Koh J, Toufighi K, Youn JY, Ou J, San Luis BJ, Bandyopadhyay S, Hibbs M, Hess D, Gingras AC, Bader GD, Troyanskaya OG, Brown GW, Andrews B, Boone C, Myers CL (2010) Quantitative analysis of fitness and genetic interactions in yeast on a genome scale. Nat Methods 7(12):1017–1024. https://doi.org/10.1038/nmeth.1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Novick P, Botstein D (1985) Phenotypic analysis of temperature-sensitive yeast actin mutants. Cell 40(2):405–416

    Article  CAS  PubMed  Google Scholar 

  12. Bender A, Pringle JR (1991) Use of a screen for synthetic lethal and multicopy suppressee mutants to identify two new genes involved in morphogenesis in Saccharomyces cerevisiae. Mol Cell Biol 11(3):1295–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. van Leeuwen J, Pons C, Boone C, Andrews BJ (2017) Mechanisms of suppression: the wiring of genetic resilience. BioEssays 39(7). https://doi.org/10.1002/bies.201700042

  14. Costanzo M, Kuzmin E, van Leeuwen J, Mair B, Moffat J, Boone C, Andrews B (2019) Global genetic networks and the genotype-to-phenotype relationship. Cell 177:85–100

    Article  CAS  PubMed  Google Scholar 

  15. Tong AH, Evangelista M, Parsons AB, Xu H, Bader GD, Page N, Robinson M, Raghibizadeh S, Hogue CW, Bussey H, Andrews B, Tyers M, Boone C (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294(5550):2364–2368. https://doi.org/10.1126/science.1065810

    Article  CAS  PubMed  Google Scholar 

  16. Kuzmin E, Costanzo M, Andrews B, Boone C (2016) Synthetic genetic arrays: automation of yeast genetics. Cold Spring Harb Protoc 2016(4):pdb top086652. https://doi.org/10.1101/pdb.top086652

    Article  PubMed  Google Scholar 

  17. Kuzmin E, Costanzo M, Andrews B, Boone C (2016) Synthetic genetic array analysis. Cold Spring Harb Protoc 2016(4):pdb prot088807. https://doi.org/10.1101/pdb.prot088807

    Article  PubMed  Google Scholar 

  18. Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H, Chu AM, Connelly C, Davis K, Dietrich F, Dow SW, El Bakkoury M, Foury F, Friend SH, Gentalen E, Giaever G, Hegemann JH, Jones T, Laub M, Liao H, Liebundguth N, Lockhart DJ, Lucau-Danila A, Lussier M, M'Rabet N, Menard P, Mittmann M, Pai C, Rebischung C, Revuelta JL, Riles L, Roberts CJ, Ross-MacDonald P, Scherens B, Snyder M, Sookhai-Mahadeo S, Storms RK, Veronneau S, Voet M, Volckaert G, Ward TR, Wysocki R, Yen GS, Yu K, Zimmermann K, Philippsen P, Johnston M, Davis RW (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285(5429):901–906

    Article  CAS  PubMed  Google Scholar 

  19. Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-Danila A, Anderson K, Andre B, Arkin AP, Astromoff A, El-Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian KD, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Guldener U, Hegemann JH, Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kotter P, LaBonte D, Lamb DC, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL, Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, Schimmack G, Shafer B, Shoemaker DD, Sookhai-Mahadeo S, Storms RK, Strathern JN, Valle G, Voet M, Volckaert G, Wang CY, Ward TR, Wilhelmy J, Winzeler EA, Yang Y, Yen G, Youngman E, Yu K, Bussey H, Boeke JD, Snyder M, Philippsen P, Davis RW, Johnston M (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387–391. https://doi.org/10.1038/nature00935

    Article  CAS  PubMed  Google Scholar 

  20. Schuldiner M, Collins SR, Thompson NJ, Denic V, Bhamidipati A, Punna T, Ihmels J, Andrews B, Boone C, Greenblatt JF, Weissman JS, Krogan NJ (2005) Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123(3):507–519. https://doi.org/10.1016/j.cell.2005.08.031

    Article  CAS  PubMed  Google Scholar 

  21. Li Z, Vizeacoumar FJ, Bahr S, Li J, Warringer J, Vizeacoumar FS, Min R, Vandersluis B, Bellay J, Devit M, Fleming JA, Stephens A, Haase J, Lin ZY, Baryshnikova A, Lu H, Yan Z, Jin K, Barker S, Datti A, Giaever G, Nislow C, Bulawa C, Myers CL, Costanzo M, Gingras AC, Zhang Z, Blomberg A, Bloom K, Andrews B, Boone C (2011) Systematic exploration of essential yeast gene function with temperature-sensitive mutants. Nat Biotechnol 29(4):361–367. https://doi.org/10.1038/nbt.1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ben-Aroya S, Coombes C, Kwok T, O'Donnell KA, Boeke JD, Hieter P (2008) Toward a comprehensive temperature-sensitive mutant repository of the essential genes of Saccharomyces cerevisiae. Mol Cell 30(2):248–258. https://doi.org/10.1016/j.molcel.2008.02.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. van Leeuwen J, Pons C, Mellor JC, Yamaguchi TN, Friesen H, Koschwanez J, Usaj MM, Pechlaner M, Takar M, Usaj M, VanderSluis B, Andrusiak K, Bansal P, Baryshnikova A, Boone CE, Cao J, Cote A, Gebbia M, Horecka G, Horecka I, Kuzmin E, Legro N, Liang W, van Lieshout N, McNee M, San Luis BJ, Shaeri F, Shuteriqi E, Sun S, Yang L, Youn JY, Yuen M, Costanzo M, Gingras AC, Aloy P, Oostenbrink C, Murray A, Graham TR, Myers CL, Andrews BJ, Roth FP, Boone C (2016) Exploring genetic suppression interactions on a global scale. Science 354(6312). https://doi.org/10.1126/science.aag0839

  24. Sung MK, Ha CW, Huh WK (2008) A vector system for efficient and economical switching of C-terminal epitope tags in Saccharomyces cerevisiae. Yeast 25(4):301–311. https://doi.org/10.1002/yea.1588

    Article  CAS  PubMed  Google Scholar 

  25. Goldstein AL, McCusker JH (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15(14):1541–1553. https://doi.org/10.1002/(SICI)1097-0061(199910)15:14<1541::AID-YEA476>3.0.CO;2-K

    Article  CAS  PubMed  Google Scholar 

  26. Gietz RD, Schiestl RH, Willems AR, Woods RA (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11(4):355–360. https://doi.org/10.1002/yea.320110408

    Article  CAS  PubMed  Google Scholar 

  27. Usaj M, Tan Y, Wang W, VanderSluis B, Zou A, Myers CL, Costanzo M, Andrews B, Boone C (2017) TheCellMap.org: a web-accessible database for visualizing and mining the global yeast genetic interaction network. G3 (Bethesda) 7(5):1539–1549. https://doi.org/10.1534/g3.117.040220

    Article  CAS  Google Scholar 

  28. Wagih O, Usaj M, Baryshnikova A, VanderSluis B, Kuzmin E, Costanzo M, Myers CL, Andrews BJ, Boone CM, Parts L (2013) SGAtools: one-stop analysis and visualization of array-based genetic interaction screens. Nucleic Acids Res 41(Web Server issue):W591–W596. https://doi.org/10.1093/nar/gkt400

    Article  PubMed  PubMed Central  Google Scholar 

  29. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, Vilo J (2019) G:profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res 47(W1):W191–W198. https://doi.org/10.1093/nar/gkz369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Keil C, Leach RW, Faizaan SM, Bezawada S, Parsons L, Baryshnikova A Treeview 3.0 (beta 1) - visualization and analysis of large data matrices. https://doi.org/10.5281/zenodo.1303402

  31. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. https://doi.org/10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Baryshnikova A (2016) Exploratory analysis of biological networks through visualization, clustering, and functional annotation in Cytoscape. Cold Spring Harb Protoc 2016(6). https://doi.org/10.1101/pdb.prot077644

  33. Baryshnikova A (2016) Systematic functional annotation and visualization of biological networks. Cell Syst 2(6):412–421. https://doi.org/10.1016/j.cels.2016.04.014

    Article  CAS  PubMed  Google Scholar 

  34. Baryshnikova A (2018) Spatial analysis of functional enrichment (SAFE) in large biological networks. Methods Mol Biol 1819:249–268. https://doi.org/10.1007/978-1-4939-8618-7_12

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Brenda J. Andrews or Charles Boone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kuzmin, E., Andrews, B.J., Boone, C. (2021). Trigenic Synthetic Genetic Array (τ-SGA) Technique for Complex Interaction Analysis. In: Wong, KC. (eds) Epistasis. Methods in Molecular Biology, vol 2212. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0947-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0947-7_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0946-0

  • Online ISBN: 978-1-0716-0947-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics