Skip to main content

Microfluidic Single-Cell Phenotyping of the Activity of Peptide-Based Antimicrobials

  • Protocol
  • First Online:
Polypeptide Materials

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2208))

Abstract

Antibiotic resistance is a major challenge for modern medicine, and there is a dire need to refresh the antibiotic development pipeline to treat infections that are resistant to currently available drugs. Peptide-based antimicrobials represent a promising source of novel anti-infectives, but their development is severely impeded due to the lack of suitable techniques to accurately quantify their antimicrobial efficacy. A major problem involves the heterogeneity of cellular phenotypes in response to these peptides, even within a clonal population of bacteria. There is thus a need to develop single-cell resolution assays to quantify drug efficacy for these novel therapeutics. We present here a detailed microfluidics-microscopy protocol for testing the efficacy of peptide-based antimicrobials on hundreds to thousands of individual bacteria in well-defined microenvironments. This enables the study of cell-to-cell differences in drug response within a clonal population. It is a highly versatile tool, which can be used to quantify drug efficacy, including the number of individual survivors at defined drug doses; it even enables the potential exploration of the molecular mechanisms of action of the drug, which are often unknown in the early stages of drug development. We present here protocols for working with Escherichia coli, but organisms of different geometric shapes and sizes may also be tested with suitable modifications of the microfluidic device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48:5–16

    Article  CAS  Google Scholar 

  2. Taylor PC, Schoenknecht FD, Sherris JC, Linner EC (1983) Determination of minimum bactericidal concentrations of oxacillin for Staphylococcus aureus: influence and significance of technical factors. Antimicrob Agents Chemother 23:142–150

    Article  CAS  Google Scholar 

  3. Mouton JW, Meletiadis J, Voss A, Turnidge J (2018) Variation of MIC measurements: the contribution of strain and laboratory variability to measurement precision. J Antimicrob Chemother 73:2374–2379

    Article  CAS  Google Scholar 

  4. Mouton JW, Muller AE, Canton R et al (2018) MIC-based dose adjustment: facts and fables. J Antimicrob Chemother 73:564–568

    Article  CAS  Google Scholar 

  5. Kavanagh A, Ramu S, Gong Y et al (2019) Effects of microplate type and broth additives on microdilution MIC susceptibility assays. Antimicrob Agents Chemother 63:e01760–e01718

    CAS  PubMed  Google Scholar 

  6. Jepson AK, Schwarz-Linek J, Ryan L et al (2016) What is the ‘minimum inhibitory concentration’ (MIC) of pexiganan acting on Escherichia coli?—a cautionary case study. In: Leake M (ed) Biophysics of infection. Advances in experimental medicine and biology, vol 915. Springer, Cham

    Google Scholar 

  7. Snoussi M, Talledo JP, Del Rosario N-A et al (2018) Heterogeneous absorption of antimicrobial peptide LL37 in Escherichia coli cells enhances population survivability. eLife 7:e38174

    Article  Google Scholar 

  8. O’Neill J (2016) Tackling drug-resistant infections globally: final report and recommendations, The Review on Antimicrobial Resistance

    Google Scholar 

  9. Mahlapuu M, Håkansson J, Ringstad L, Björn C (2016) Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol 6:194

    Article  Google Scholar 

  10. Hancock REW, Nijnik A, Philpott DJ (2012) Modulating immunity as a therapy for bacterial infections. Nat Rev Microbiol 10:243–254

    Article  CAS  Google Scholar 

  11. Hancock REW (1997) Peptide antibiotics. Lancet 349:418–422

    Article  CAS  Google Scholar 

  12. Grönberg A, Mahlapuu M, Ståhle M et al (2014) Treatment with LL-37 is safe and effective in enhancing healing of hard-to-heal venous leg ulcers: a randomized, placebo-controlled clinical trial. Wound Repair Regen 22:613–621

    Article  Google Scholar 

  13. Nguyen LT, Haney EF, Vogel HJ (2011) The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 29:464–472

    Article  CAS  Google Scholar 

  14. Ackermann M (2015) A functional perspective on phenotypic heterogeneity in microorganisms. Nat Rev Microbiol 13:497–508

    Article  CAS  Google Scholar 

  15. Balaban NQ, Gerdes K, Lewis K, McKinney JD (2013) A problem of persistence: still more questions than answers? Nat Rev Microbiol 11:587–591

    Article  CAS  Google Scholar 

  16. Lewis K (2010) Persister Cells. Annu Rev Microbiol 64:357–372

    Article  CAS  Google Scholar 

  17. Balaban NQ, Merrin J, Chait R et al (2004) Bacterial persistence as a phenotypic switch. Science 305:1622–1625

    Article  CAS  Google Scholar 

  18. Ayrapetyan M, Williams TC, Oliver JD (2015) Bridging the gap between viable but non-culturable and antibiotic persistent bacteria. Trends Microbiol 23:7–13

    Article  CAS  Google Scholar 

  19. Gossett DR, Weaver WM, MacH AJ et al (2010) Label-free cell separation and sorting in microfluidic systems. Anal Bioanal Chem 397:3249–3267

    Article  CAS  Google Scholar 

  20. Tan AP, Dudani JS, Arshi A et al (2014) Continuous-flow cytomorphological staining and analysis. Lab Chip 14:522–531

    Article  CAS  Google Scholar 

  21. Guo MT, Rotem A, Heyman JA, Weitz DA (2012) Droplet microfluidics for high-throughput biological assays. Lab Chip 12:2146–2155

    Article  CAS  Google Scholar 

  22. Wang P, Robert L, Pelletier J et al (2010) Robust growth of Escherichia coli. Curr Biol 20:1099–1103

    Article  CAS  Google Scholar 

  23. Taheri-Araghi S, Bradde S, Sauls JT et al (2015) Cell-size control and homeostasis in bacteria. Curr Biol 25:385–391

    Article  CAS  Google Scholar 

  24. Bergmiller T, Andersson AMC, Tomasek K et al (2017) Biased partitioning of the multidrug efflux pump AcrAB-TolC underlies long-lived phenotypic heterogeneity. Science 356:311–315

    Article  CAS  Google Scholar 

  25. Chait R, Ruess J, Bergmiller T et al (2017) Shaping bacterial population behavior through computer-interfaced control of individual cells. Nat Commun 8:1535

    Article  Google Scholar 

  26. Lord ND, Norman TM, Yuan R et al (2019) Stochastic antagonism between two proteins governs a bacterial cell fate switch. Science 366:116–120

    Article  CAS  Google Scholar 

  27. Łapińska U, Glover G, Capilla-Lasheras P et al (2019) Bacterial ageing in the absence of external stressors. Philos Trans R Soc B 374:20180442

    Article  Google Scholar 

  28. Tanouchi Y, Pai A, Park H et al (2015) A noisy linear map underlies oscillations in cell size and gene expression in bacteria. Nature 523:357–360

    Article  CAS  Google Scholar 

  29. Cama J, Voliotis M, Metz J et al (2020) Single-cell microfluidics facilitates the rapid quantification of antibiotic accumulation in Gram-negative bacteria, Lab on a Chip, https://doi.org/10.1039/D0LC00242A

  30. Bamford RA, Smith A, Metz J et al (2017) Investigating the physiology of viable but non-culturable bacteria by microfluidics and time-lapse microscopy. BMC Biol 15:121

    Article  Google Scholar 

  31. Smith A, Metz J, Pagliara S (2019) MMHelper: an automated framework for the analysis of microscopy images acquired with the mother machine. Sci Rep 9:10123

    Article  Google Scholar 

  32. Kepiro IE, Marzuoli I, Hammond K et al (2020) Engineering chirally blind protein pseudocapsids into antibacterial persisters, ACS Nano 14(2):1609–1622

    Google Scholar 

  33. Stuurman N, Amdodaj N, Vale R (2007) μManager: open source software for light microscope imaging. Micros Today 15:42–43

    Article  Google Scholar 

  34. Kaiser M, Jug F, Julou T et al (2018) Monitoring single-cell gene regulation under dynamically controllable conditions with integrated microfluidics and software. Nat Commun 9:212

    Article  Google Scholar 

Download references

Acknowledgments

J.C. was supported by a Wellcome Trust Institutional Strategic Support Award (204909/Z/16/Z) to the University of Exeter. S.P. was supported by a MRC Proximity to Discovery EXCITEME2 grant (MCPC17189), a Royal Society Research Grant (RG180007), a Wellcome Trust Strategic Seed Corn Fund (WT097835/Z/11/Z), and a Marie Skłodowska-Curie grant (H2020-MSCA-ITN-2015-675752). We thank the Jun laboratory for providing us with an epoxy copy of their mother machine mold.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jehangir Cama or Stefano Pagliara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cama, J., Pagliara, S. (2021). Microfluidic Single-Cell Phenotyping of the Activity of Peptide-Based Antimicrobials. In: Ryadnov, M. (eds) Polypeptide Materials. Methods in Molecular Biology, vol 2208. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0928-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0928-6_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0927-9

  • Online ISBN: 978-1-0716-0928-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics