Skip to main content

A Shortcut to the Synthesis of Peptide Thioesters

  • Protocol
  • First Online:
Polypeptide Materials

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2208))

Abstract

Peptide thioesters serve as fundamental building blocks for the synthesis of proteins and cyclic peptides. Classically, methods to synthesize thioesters have been based on acid-labile amino-protecting groups for which final side-chain deprotection required the use of hazardous hydrogen fluoride (HF). Alternative protection schemes based on base-labile amino-protecting groups have become preferred methods but are not suitable due to the lability of thioester bonds toward bases. In this method, we employ a trifluoracetic acid/trimethylsilyl bromide (TFA/TMSBr) protocol using a hydroxymethyl resin obviating the need for HF. TFA/TMSBr is volatile enough to be easily removed yet less hazardous than HF, making it more practical for general peptide chemists. We describe optimized cleavage procedures and appropriate protecting group schemes and discuss in situ neutralization protocols. The method is relatively simple, straightforward, and easily scalable, allowing the facile preparation of alkyl and aryl thioesters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dawson PE, Muir TW, Clark-Lewis I, Kent SB (1994) Synthesis of proteins by native chemical ligation. Science 266:776–779. https://doi.org/10.1126/science.7973629

    Article  CAS  PubMed  Google Scholar 

  2. Zhang L, Tam JP (1997) Synthesis and application of unprotected cyclic peptides as building blocks for peptide dendrimers. J Am Chem Soc 119:2363–2370. https://doi.org/10.1021/ja9621105

  3. Li X, Kawakami T, Aimoto S (1998) Direct preparation of peptide thieosters using an Fmoc solid-phase method. Tetrahedron Lett 39:8669–8672. https://doi.org/10.1016/S0040-4039(98)01868-1

    Article  CAS  Google Scholar 

  4. Raz R, Rademann J (2011) Fmoc-based synthesis of peptide thioesters for native chemical ligation employing a tert-butyl thiol linker. Org Lett 13:1606–1609. https://doi.org/10.1021/ol1029723

    Article  CAS  PubMed  Google Scholar 

  5. Burlina F, Morris C, Behrendt R, White P, Offer J (2012) Simplifying native chemical ligation with an N-acylsulfonamide linker. Chem Commun 48:2579–2581. https://doi.org/10.1039/C2CC15911B

    Article  CAS  Google Scholar 

  6. Hojo H, Kwon Y, Kakuta Y, Tsuda S, Tanaka I, Hikichi K, Aimoto S (1993) Development of a linker with an enhanced stability for the preparation of peptide thioesters and its application to the synthesis of stable-isotope-labelled HU-type DNA-binding protein. Bull Chem Soc Jpn 66:2700–2706. https://doi.org/10.1246/bcsj.66.2700

    Article  CAS  Google Scholar 

  7. Muttenthaler M, Albericio F, Dawson PE (2015) Methods, setup and safe handling for anhydrous hydrogen fluoride cleavage in Boc solid-phase peptide synthesis. Nat Protoc 10:1067–1083. https://doi.org/10.1038/nprot.2015.061

    Article  CAS  PubMed  Google Scholar 

  8. Behrendt R, White P, Offer J (2016) Advances in Fmoc solid-phase peptide synthesis. J Pept Sci 22:4–27. https://doi.org/10.1002/psc.2836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kent SBH (1988) Chemical synthesis of peptides and proteins. Annu Rev Biochem 57:957–989. https://doi.org/10.1146/annurev.bi.57.070188.004521

  10. Schnölzer M, Alewood P, Jones A, Alewood D, Kent SBH (1992) In situ neutralization in Boc-chemistry solid phase peptide synthesis. Int J Pept Protein Res 40:180–193. https://doi.org/10.1111/j.1399-3011.1992.tb00291.x

    Article  PubMed  Google Scholar 

  11. Behrendt R, Huber S, White P (2016) Preventing aspartimide formation in Fmoc SPPS of Asp-Gly containing peptides – practical aspects of new trialkycarbinol based protecting groups. J Pept Sci 22:92–97. https://doi.org/10.1002/psc.2844

  12. Tam JP, Heath WF, Merrifield RB (1986) Mechanisms for the removal of benzyl protecting groups in synthetic peptides by trifluoromethanesulfonic acid-trifluoroacetic acid-dimethylsulfide. J Am Chem Soc 108:5242–5251. https://doi.org/10.1021/ja00277a031

    Article  CAS  Google Scholar 

  13. Murakami M, Okamoto R, Izumi M, Kajihara Y (2012) Chemical synthesis of an erythropoietin glycoform containing a complex-type disialyloligosaccharide. Angew Chem Int Ed 51:3567–3572. https://doi.org/10.1002/anie.201109034

    Article  CAS  Google Scholar 

  14. Fuji N, Otaka A, Sugiyama N, Hatano M, Yajima H (1987) Studies on peptides.CLV. Evaluation of trimethylsilyl bromide as a hard-acid deprotecting reagent in peptide synthesis. Chem Pharm Bull 35:3880–3883. https://doi.org/10.1248/cpb.35.3880

    Article  Google Scholar 

  15. Raz R, Burlina F, Ismail M, Downward J, Li J, Smerdon SJ, Quibell M, White PD, Offer J (2016) HF-free Boc synthesis of peptide thioesters for ligation and cyclization. Angew Chem Int Ed 55:13174–13179. https://doi.org/10.1002/anie.201607657

    Article  CAS  Google Scholar 

  16. Hackeng TM, Griffin JH, Dawson PE (1999) Protein synthesis by native chemical ligation: expanded scope by using straightforward methodology. Proc Natl Acad Sci U S A 96:10068–10073. https://doi.org/10.1073/pnas.96.18.10068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bang D, Pentelute BL, Gates ZP, Kent SB (2006) Direct on-resin synthesis of peptide-αthiophenylesters for use in native chemical ligation. Org Lett 8:1049–1052. https://doi.org/10.1021/ol052811j

    Article  CAS  PubMed  Google Scholar 

  18. Topping RJ, Nuiry I, Mastriona J, Moss JA (2008) Optimized ‘inverse activation’ methodology for esterification of hydroxyl-functionalized resins. Tetrahedron Lett 49:2907–2910. https://doi.org/10.1016/j.tetlet.2008.03.029

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Raz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Raz, R., Offer, J. (2021). A Shortcut to the Synthesis of Peptide Thioesters. In: Ryadnov, M. (eds) Polypeptide Materials. Methods in Molecular Biology, vol 2208. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0928-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0928-6_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0927-9

  • Online ISBN: 978-1-0716-0928-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics