Skip to main content

A Differential Scanning Calorimetry (DSC) Experimental Protocol for Evaluating the Modified Thermotropic Behavior of Liposomes with Incorporated Guest Molecules

  • Protocol
  • First Online:
Supramolecules in Drug Discovery and Drug Delivery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2207))

Abstract

Differential scanning calorimetry (DSC) is a well-established technique, suitable to monitor the interactions that may take place among the drug delivery systems of liposomes and the potential bioactive molecules that are incorporated inside them. Moreover, the DSC technique is considered to be a useful tool to characterize the thermal behavior of lipidic bilayers in the absence and presence of drugs and to highlight parameters, such as the cooperativity between the lipids and the guest molecules (i.e. drugs, polymers, dendrimers), providing also a prediction of the behavior of potential future drug delivery liposomal platforms. In this study, a protocol for DSC measurements on liposomal systems with incorporated guest molecules is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fotakis C, Christodouleas D, Zoumpoulakis P, Kritsi E, Benetis NP, Mavromoustakos T, Reis H, Gili A, Papadopoulos MG, Zervou M (2011) Comparative biophysical studies of Sartan class drug molecules losartan and candesartan (CV-11974) with membrane bilayers. J Phys Chem B 115(19):6180–6192. https://doi.org/10.1021/jp110371k

    Article  CAS  PubMed  Google Scholar 

  2. Sadeghpour A, Rappolt M, Ntountaniotis D, Chatzigeorgiou P, Viras K, Megariotis G, Papadopoulos MG, Siapi E, Mali G, Mavromoustakos T (2015) Comparative study of interactions of aliskiren and AT1 receptor antagonists with lipid bilayers. Biochim Biophys Acta Biomembr 1848(4):984–994. https://doi.org/10.1016/j.bbamem.2014.12.004

    Article  CAS  Google Scholar 

  3. Leonis G, Semidalas EC, Chatzigeorgiou P, Pollatos E, Semidalas CE, Rappolt M, Viras K, Mavromoustakos T (2019) Chapter five—Vinblastine: cholesterol interactions in lipid bilayers. In: Iglič A, Rappolt M, García-Sáez AJ (eds) Advances in biomembranes and lipid self-assembly, vol 29, pp 127–157. https://doi.org/10.1016/bs.abl.2019.01.008

    Chapter  Google Scholar 

  4. Matsingou C, Demetzos C (2007) Calorimetric study on the induction of interdigitated phase in hydrated DPPC bilayers by bioactive labdanes and correlation to their liposome stability. The role of chemical structure. Chem Phys Lipids 145:45–62. https://doi.org/10.1016/j.chemphyslip.2006.10.004

    Article  CAS  PubMed  Google Scholar 

  5. Matsingou C, Demetzos C (2007) The perturbing effect of cholesterol on the interaction between labdanes and DPPC bilayers. Thermochim Acta 452:116–123. https://doi.org/10.1016/j.tca.2006.10.015

    Article  CAS  Google Scholar 

  6. Koynova R, Caffrey M (1998) Phases and phase transitions of the phosphatidylcholines. Biochim Biophys Acta 1376:91–145. https://doi.org/10.1016/S0304-4157(98)00006-9

    Article  CAS  PubMed  Google Scholar 

  7. Koukoulitsa C, Kyrikou I, Demetzos C, Mavromoustakos T (2006) The role of the anticancer drug vinorelbine in lipid bilayers using differential scanning calorimetry and molecular modeling. Chem Phys Lipids 144:85–95. https://doi.org/10.1016/j.chemphyslip.2006.07.002

    Article  CAS  PubMed  Google Scholar 

  8. Kyrikou I, Georgopoulos A, Hatziantoniou S, Mavromoustakos T, Demetzos C (2005) A comparative study of the effects of cholesterol and sclareol, a bioactive labdane type diterpene, on phospholipid bilayers. Chem Phys Lipids 133:125–134. https://doi.org/10.1016/j.chemphyslip.2004.09.021

    Article  CAS  PubMed  Google Scholar 

  9. Demetzos C (2015) Biophysics and thermodynamics: the scientific building blocks of bio-inspired drug delivery nano systems. AAPS Pharm Sci Tech 16(3):491–495. https://doi.org/10.1208/s12249-015-0321-1

    Article  CAS  Google Scholar 

  10. Demetzos C (2008) Differential scanning calorimetry (DSC): a tool to study the thermal behavior of lipid bilayers and liposomal stability. J Liposome Res 18:159–173. https://doi.org/10.1080/08982100802310261

    Article  CAS  PubMed  Google Scholar 

  11. Pippa N, Gardikis K, Pispas S, Demetzos C (2014) The physicochemical/thermodynamic balance of advanced drug liposomal delivery systems. J Therm Anal Calorim 116(1):99–105. https://doi.org/10.1007/s10973-013-3406-7

    Article  CAS  Google Scholar 

  12. Pippa N, Meristoudi A, Pispas S, Demetzos C (2015) Temperature-dependent drug release from DPPC:C12H25-PNIPAM-COOH liposomes: control of the drug loading/release by modulation of the nanocarriers’ components. Int J Pharm 485(1–2):374–382. https://doi.org/10.1016/j.ijpharm.2015.03.014

    Article  CAS  PubMed  Google Scholar 

  13. Pippa N, Pispas S, Demetzos C (2015) The metastable phases as modulators of biophysical behavior of liposomal membranes. The role of biomolecular sculpture of polymeric guest. J Therm Anal Calorim 120(1):937–945. https://doi.org/10.1007/s10973-014-4116-5

    Article  CAS  Google Scholar 

  14. Pippa N, Stellas D, Skandalis A, Pispas S, Demetzos C, Libera M, Marcinkowski A, Trzebicka B (2016) Chimeric lipid/block copolymer nanovesicles: physico-chemical and biocompatibility evaluation. Eur J Pharm Biopharm 107:295–309. https://doi.org/10.1016/j.ejpb.2016.08.003

    Article  CAS  PubMed  Google Scholar 

  15. Pippa N, Chronopoulos DD, Stellas D, Fernández-Pacheco R, Arenal R, Demetzos C, Tagmatarchis N (2017) Design and development of multi-walled carbon nanotube-liposome drug delivery platforms. Int J Pharm 528(1–2):429–439. https://doi.org/10.1016/j.ijpharm.2017.06.043

    Article  CAS  PubMed  Google Scholar 

  16. Demetzos C, Pippa N (2014) Advanced drug delivery nanosystems (aDDnSs): a mini-review. Drug Deliv 21(4):250–257. https://doi.org/10.3109/10717544.2013.844745

    Article  CAS  PubMed  Google Scholar 

  17. Liossi AS, Ntountaniotis D, Kellici TF, Chatziathanasiadou MV, Megariotis G, Mania M, Becker-Baldus J, Kriechbaum M, Krajnc A, Christodoulou E, Glaubitz C, Rappolt M, Heinz A, Gregor M, Theodorou DN, Valsami G, Pitsikalis M, Iatrou H, Tzakos AG, Mavromoustakos T (2017) Exploring the interactions of irbesartan and irbesartan–2-hydroxypropyl-β-cyclodextrin complex with model membranes. Biochim Biophys Acta 1859(6):1089–1098. https://doi.org/10.1016/j.bbamem.2017.03.003

    Article  CAS  Google Scholar 

  18. Konstantinidi A, Naziris N, Chountoulesi M, Kiriakidi S, Sartori S, Kolokouris D, Amentisch H, Mali G, Ntountaniotis D, Demetzos C, Mavromoustakos T, Kolocouris A (2018) Comparative perturbation effects exerted by the Influenza M2 protein inhibitors amantadine and the spiro[pyrrolidine-2,2-adamantane] variant AK13 to membrane bilayers studied using biophysical experiments and molecular dynamics simulations. J Phys Chem B 122(43):9877–9895. https://doi.org/10.1021/acs.jpcb.8b07071

    Article  CAS  PubMed  Google Scholar 

  19. Pippa N, Chountoulesi M, Kyrili A, Meristoudi A, Pispas S, Demetzos C (2016) Calorimetric study on pH-responsive block copolymer grafted lipid bilayers: rational design and development of liposomes. J Liposome Res 26(3):211–220. https://doi.org/10.3109/08982104.2015.1076464

    Article  CAS  PubMed  Google Scholar 

  20. Kyrili A, Chountoulesi M, Pippa N, Meristoudi A, Pispas S, Demetzos C (2017) Design and development of pH-sensitive liposomes by evaluating the thermotropic behavior of their chimeric bilayers. J Therm Anal Calorim 127(2):1381–1392. https://doi.org/10.1007/s10973-016-6069-3

    Article  CAS  Google Scholar 

  21. Chiu MH, Prenner EJ (2011) Differential scanning calorimetry: an invaluable tool for a detailed thermodynamic characterization of macromolecules and their interactions. J Pharm Bioallied Sci 3(1):39–59. https://doi.org/10.4103/0975-7406.76463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chatzigeorgiou P, Mourelatou A, Pollatos E, Margari D, Zogzas N, Viras K, Mavromoustakos T, Semidalas CE (2008) Comparison of the thermal behavior and conformational changes in partially and fully hydrated dipalmitoylphosphatidylcholine systems. J Therm Anal Calorim 131(2):887–898. https://doi.org/10.1007/s10973-017-6622-8

    Article  CAS  Google Scholar 

  23. Sarpietro MG, Castelli F (2011) Transfer kinetics from colloidal drug carriers and liposomes to biomembrane models: DSC studies. J Pharm Bioallied Sci 3(1):77–88. https://doi.org/10.4103/0975-7406.76472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cooper A, Nutley MA, Wadood A (2000) Differential scanning microcalorimetry. In: Harding SE, Chowdhry BZ (eds) Protein-ligand Interactions: hydrodynamics and calorimetry. Oxford University Press, Oxford, NY, pp 287–318

    Google Scholar 

  25. Bruylants G, Wouters J, Michaux C (2005) Differential scanning calorimetry in life science: thermodynamics, stability, molecular recognition and application in drug design. Curr Med Chem 12:2011–2020. https://doi.org/10.2174/0929867054546564

    Article  CAS  PubMed  Google Scholar 

  26. Ionov M, Gardikis K, Wrobel D, Hatziantoniou S, Mourelatou H, Majoral J-P, Klajnert B, Bryszewska M, Demetzos C (2011) Interaction of cationic phosphorus dendrimers (CPD) with charged and neutral lipid membranes. Colloids Surf B Biointerfaces 82(1):8–12. https://doi.org/10.1016/j.colsurfb.2010.07.046

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been co-financed by the European Union and Greek national funds through the program “Support for Researchers with Emphasis on Young Researchers” (call code: EDBM34, ΚΕ 14995) and under the research title “Preparation and study of innovative forms of administration of pharmaceutical molecules targeting at improved pharmacological properties.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costas Demetzos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chountoulesi, M., Naziris, N., Mavromoustakos, T., Demetzos, C. (2021). A Differential Scanning Calorimetry (DSC) Experimental Protocol for Evaluating the Modified Thermotropic Behavior of Liposomes with Incorporated Guest Molecules. In: Mavromoustakos, T., Tzakos, A.G., Durdagi, S. (eds) Supramolecules in Drug Discovery and Drug Delivery. Methods in Molecular Biology, vol 2207. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0920-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0920-0_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0919-4

  • Online ISBN: 978-1-0716-0920-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics