Skip to main content

Dynamic Imaging of Mouse Embryos and Cardiac Development in Static Culture

Part of the Methods in Molecular Biology book series (MIMB,volume 2206)

Abstract

Dynamic imaging is a powerful approach to assess the function of a developing organ system. The heart is a dynamic organ that undergoes quick morphological and mechanical changes through early embryonic development. Defining the embyonic mouse heart's normal function is important for our own understanding of human heart development and will inform us on treatments and prevention of congenital heart defects (CHD). Traditional methods such as ultrasound or fluorescence-based microscopy are suitable for live dynamic imaging, are excellent to visualize structure and connect gene expression to phenotypes, but can be of low quality in resolving fine features and lack imaging depth and scale to fully appreciate organ morphogenesis. Additionally, previous methods can be limited in accommodating a live imaging apparatus capable of sustaining whole embryo development for extended periods time. Optical coherence tomography (OCT) is unique in this circumstance because acquisition of three-dimensional images without contrast reagents, at single cell resolution make it a suitable modality to visualize fine structures in the developing embryo. OCT setups are highly customizable for live imaging because of the tethered imaging arm, due to its setup as a fiber-based interferometer. OCT allows for 4D (3D + time) functional imaging of living mouse embryos and can provide functional and mechanical information to ascertain how the heart’s pump function changes through development. In this chapter, we will focus on how we use OCT to visualize live heart dynamics at different stages of development and provide mechanical information to reveal functional properties of the developing heart.

Key words

  • Optical coherence tomography
  • Cardiovascular development
  • Embryo culture
  • Cardiodynamic analysis
  • Mouse
  • Live imaging
  • Heart morphogenesis

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-0916-3_10
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-0916-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP et al (2019) Heart disease and stroke statistics—2019 update: a report from the American Heart Association. Circulation 139:e56. https://doi.org/10.1161/cir.0000000000000659

    CrossRef  PubMed  Google Scholar 

  2. deAlmeida A, McQuinn T, Sedmera D (2007) Increased ventricular preload is compensated by myocyte proliferation in normal and hypoplastic fetal chick left ventricle. Circ Res 100(9):1363–1370. https://doi.org/10.1161/01.RES.0000266606.88463.cb

    CrossRef  CAS  PubMed  Google Scholar 

  3. Katherine C, Graham R, Sandra R (2018) Influence of blood flow on cardiac development. Prog Biophys Mol Biol 137:95. https://doi.org/10.1016/j.pbiomolbio.2018.05.005. PMID: 29772208

    CrossRef  Google Scholar 

  4. Shang W, David SL, Monica DG, Andrew LL, Kirill VL, Irina VL (2016) Four-dimensional live imaging of hemodynamics in mammalian embryonic heart with Doppler optical coherence tomography. J Biophotonics 9(8):837–847. https://doi.org/10.1002/jbio.201500314. PMID: 26996292

    CrossRef  Google Scholar 

  5. Michael CB, Jonathan DL, Takashi M (2014) Hemodynamic forces regulate developmental patterning of atrial conduction. PLoS One 9(12):e115207. https://doi.org/10.1371/journal.pone.0115207. PMID: 25503944

    CrossRef  CAS  Google Scholar 

  6. Madeline M, Sandra R (2014) Congenital heart malformations induced by hemodynamic altering surgical interventions. Front Physiol 5:287. https://doi.org/10.3389/fphys.2014.00287. PMID: 25136319

    CrossRef  Google Scholar 

  7. Maria R, Carlin R, Angela D, Chiffvon PS, Andy W, Robert GG et al (2003) Hemodynamics is a key epigenetic factor in development of the cardiac conduction system. Circ Res 93(1):77–85. https://doi.org/10.1161/01.RES.0000079488.91342.B7. PMID: 12775585

    CrossRef  CAS  Google Scholar 

  8. Lopez AL 3rd, Wang S, Larin KV, Overbeek PA, Larina IV (2015) Live four-dimensional optical coherence tomography reveals embryonic cardiac phenotype in mouse mutant. J Biomed Opt 20(9):90501. https://doi.org/10.1117/1.jbo.20.9.090501. PubMed PMID: 26385422

    CrossRef  Google Scholar 

  9. Wang S, Garcia MD, Lopez AL, Overbeek PA, Larin KV, Larina IV (2017) Dynamic imaging and quantitative analysis of cranial neural tube closure in the mouse embryo using optical coherence tomography. Biomed Opt Express 8(1):407–419. https://doi.org/10.1364/BOE.8.000407

    CrossRef  PubMed  Google Scholar 

  10. Lopez AL 3rd, Larina IV (2019) Second harmonic generation microscopy of early embryonic mouse hearts. Biomed Opt Express 10(6):2898–2908. https://doi.org/10.1364/BOE.10.002898. PubMed PMID: 31259060

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lopez AL 3rd, Garcia MD, Dickinson ME, Larina IV (2015) Live confocal microscopy of the developing mouse embryonic yolk sac vasculature. Methods Mol Biol 1214:163–172. https://doi.org/10.1007/978-1-4939-1462-3_9. PubMed PMID: 25468603

    CrossRef  PubMed  Google Scholar 

  12. Wang S, Lakomy DS, Garcia MD, Lopez AL, Larin KV, Larina IV (2016) Four-dimensional live imaging of hemodynamics in mammalian embryonic heart with Doppler optical coherence tomography. J Biophotonics 9(8):837–847. https://doi.org/10.1002/jbio.201500314

    CrossRef  PubMed  PubMed Central  Google Scholar 

  13. Liu A, Wang R, Thornburg KL, Rugonyi S (2009) Efficient postacquisition synchronization of 4-D nongated cardiac images obtained from optical coherence tomography: application to 4-D reconstruction of the chick embryonic heart. J Biomed Opt 14(4):044020. https://doi.org/10.1117/1.3184462. PubMed PMID: 19725731

    CrossRef  PubMed  Google Scholar 

  14. Jenkins MW, Rothenberg F, Roy D, Nikolski VP, Hu Z, Watanabe M et al (2006) 4D embryonic cardiography using gated optical coherence tomography. Opt Express 14(2):736–748. PubMed PMID: 19503392

    CrossRef  CAS  Google Scholar 

  15. Jenkins MW, Chughtai OQ, Basavanhally AN, Watanabe M, Rollins AM (2007) In vivo gated 4D imaging of the embryonic heart using optical coherence tomography. J Biomed Opt 12(3):030505. https://doi.org/10.1117/1.2747208. PubMed PMID: 17614708

    CrossRef  PubMed  Google Scholar 

  16. Mariampillai A, Standish BA, Munce NR, Randall C, Liu G, Jiang JY et al (2007) Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system. Opt Express 15(4):1627–1638. PubMed PMID: 19532397

    CrossRef  Google Scholar 

  17. Larin KV, Larina IV, Liebling M, Dickinson ME (2009) Live imaging of early developmental processes in mammalian embryos with optical coherence tomography. J Innov Opt Health Sci 2(3):253–259. https://doi.org/10.1142/s1793545809000619. PubMed PMID: 20582330; PubMed Central PMCID: PMCPMC2891056

    CrossRef  PubMed  PubMed Central  Google Scholar 

  18. Gargesha M, Jenkins MW, Wilson DL, Rollins AM (2009) High temporal resolution OCT using image-based retrospective gating. Opt Express 17(13):10786–10799. PubMed PMID: 19550478; PubMed Central PMCID: PMCPMC2748662

    CrossRef  CAS  Google Scholar 

  19. Daniels K, Daugherty J, Jones J, Mosher W (2015) Current contraceptive use and variation by selected characteristics among women aged 15–44: United States, 2011–2013. Natl Health Stat Rep 86:1–14

    Google Scholar 

  20. Division of Reproductive Health, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention (CDC) (2015) U.S. Selected Practice Recommendations for Contraceptive Use, 2013: adapted from the World Health Organization selected practice recommendations for contraceptive use, 2nd edition. MMWR Recomm Rep 62(RR-05):1–60

    Google Scholar 

  21. Liebling M, Forouhar AS, Gharib M, Fraser SE, Dickinson ME (2005) Four-dimensional cardiac imaging in living embryos via postacquisition synchronization of nongated slice sequences. J Biomed Opt 10(5):054001. https://doi.org/10.1117/1.2061567. PubMed PMID: 16292961

    CrossRef  PubMed  Google Scholar 

  22. Sudheendran N, Syed SH, Dickinson ME, Larina IV, Larin KV (2011) Speckle variance OCT imaging of the vasculature in live mammalian embryos. Laser Phys Lett 8(3):247–252

    CrossRef  CAS  Google Scholar 

  23. Mariampillai A, Leung MK, Jarvi M, Standish BA, Lee K, Wilson BC et al (2010) Optimized speckle variance OCT imaging of microvasculature. Opt Lett 35(8):1257–1259. https://doi.org/10.1364/ol.35.001257. PubMed PMID: 20410985

    CrossRef  PubMed  Google Scholar 

  24. Chen Z, Milner TE, Srinivas S, Wang X, Malekafzali A, van Gemert MJ et al (1997) Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography. Opt Lett 22(14):1119–1121. PubMed PMID: 18185770

    CrossRef  CAS  Google Scholar 

  25. Vakoc B, Yun S, de Boer J, Tearney G, Bouma B (2005) Phase-resolved optical frequency domain imaging. Opt Express 13(14):5483–5493. PubMed PMID: 19498543; PubMed Central PMCID: PMCPMC2705336

    CrossRef  CAS  Google Scholar 

  26. Larina IV, Sudheendran N, Ghosn M, Jiang J, Cable A, Larin KV et al (2008) Live imaging of blood flow in mammalian embryos using Doppler swept-source optical coherence tomography. J Biomed Opt 13(6):060506. https://doi.org/10.1117/1.3046716. PubMed PMID: 19123647

    CrossRef  PubMed  Google Scholar 

  27. Larina IV, Ivers S, Syed S, Dickinson ME, Larin KV (2009) Hemodynamic measurements from individual blood cells in early mammalian embryos with Doppler swept source OCT. Opt Lett 34(7):986–988. PubMed PMID: 19340193; PubMed Central PMCID: PMCPMC2874199

    CrossRef  CAS  Google Scholar 

  28. Jones EA, Baron MH, Fraser SE, Dickinson ME (2004) Measuring hemodynamic changes during mammalian development. Am J Physiol Heart Circ Physiol 287(4):H1561–H1569. https://doi.org/10.1152/ajpheart.00081.2004. PubMed PMID: 15155254

    CrossRef  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by grants from the National Institute of Health R01HL120140, R01EB027099, and R01HD096335 and the American Heart Association 19PRE34380240.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina V. Larina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Lopez, A.L., Larina, I.V. (2021). Dynamic Imaging of Mouse Embryos and Cardiac Development in Static Culture. In: Ribatti, D. (eds) Vascular Morphogenesis. Methods in Molecular Biology, vol 2206. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0916-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0916-3_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0915-6

  • Online ISBN: 978-1-0716-0916-3

  • eBook Packages: Springer Protocols